

High Resolution SOI Pixel Detector ~ overview ~

Dec. 11, 2017, HSTD11 & SOIPIX2017@OIST

Yasuo Arai

on behalf of SOIPIX Collaboration

High Energy Accelerator Research Organization (KEK), & Okinawa Institute of Science and Technology (OIST)

yasuo.arai@kek.jp, http://rd.kek.jp/project/soi/

Outline of Presentation

- Introduction
- SOI Pixel Process
 3 process refinements
 - Buried Well
 - Double SOI
 - Pinned Depleted Diode
- Performance Examples of the Detector
- Summary

1st International Worksop on SOI Detector (SOIPIX2015)

@Sendai, June 3-6, 2015

SOIPIX MPW (Multi-Project Wafer) run

Silicon-On-Insulator Pixel (SOIPIX) Detector

Our challenge for SOI pixel have started in 2005. Monolithic Detector having fine resolution of silicon process and high functionality of CMOS LSI by using a SOI Pixel Technology.

Lapis Semiconductor 0.2 μm FD-SOI Pixel Process

Process	0.2 μm Low-Leakage Fully-Depleted SOI CMOS	
	1 Poly, 5 Metal layers.	
	MIM Capacitor (1.5 fF/um²), DMOS	
	Core (I/O) Voltage = 1.8 (3.3) V	
SOI wafer	Diameter: 200 mm ϕ , 720 μ m thick	
(single)	Top Si : Cz, \sim 10 Ω -cm, p-type, \sim 40 nm thick	
	Buried Oxide: 200 nm thick	
	Handle wafer: Cz (n) $^{\sim}700~\Omega$ -cm,	
	FZ(n) > 2k Ω -cm, FZ(p) ~25 k Ω -cm etc.	
Backside	Mechanical Grind, Chemical Etching, Back side	
process	Implant, Laser Annealing and Al plating	

Features of SOI Pixel Detector

- Monolithic device. No mechanical bonding. Small pixel size.
- Fabricated with semiconductor process only.
 - → High reliability and Low Cost.
- High Resistive fully depleted sensor (50um~700um thick) with Low sense node capacitance. → Large S/N.
- On Pixel processing with CMOS circuits.
- No Latch up and very low Single Event cross section.
- Can be operated in wide temperature (1K-570K) range.
- Based on Industry Standard Technology.

Layout Shrink (Active Merge)

In the SOI process, it is possible to merge NMOS & PMOS Active region and share contacts.

Single Port SRAM Bit Cell with Active Merge Technique

Only 1 Active region

Cell Size : 3.94 mm X 3.06 mm = 12.06 mm²

Hexagonal Counting-type Pixel (under development)

Smallest Counting-type Pixel of this kind. (much smaller than designed in 0.13um process)

Charge Amp Shaper Discriminator Q Share Handling 19bit Counter 7bit register (in 2,340 um²)

(With IHEP China)

Main issues in SOI Pixel

- Transistors does not work when highvoltage is applied to handle wafer.
 (Back-Gate Effect)
- Circuit signal and sense node couples.
 (Signal Cross Talk)
- Oxide trapped hole induced by radiation will shift transistor threshold voltage.

(Radiation Tolerance)

Back Gate Effect

- Make P-N junction by cutting top SOI Si and BOX.
- Then implant impurity with high density.

With biasing high-voltage to the backside of substrate, Leakage current will increases.

1st refinement: Buried p-Well (BPW)

- Keep Top Si not affected
- Low Dose
- Suppress the **Back Gate Effect**.
- Shrink pixel size without loosing sensitive area.
- Increase break down voltage with low dose region.
- With biasing middle Si layer, radiation hardness is improved.

NMOS Ids – Vgs with BPW=0V

Main Issues in SOI detector (cont.)

The BPW layer solved the back gate issue, but other issues are not yet solved.

Then we introduced additional conductive layer under the transistors (→ Double SOI).

2nd refinement: Double SOI (DSOI)

→ Miyoshi's Talk

- Middle Si layer shields coupling between sensor and circuit.
- It also compensate E-field generated by radiation trapped hole by applying negative voltage to the middle layer.
- Possible to shrink buried well size to reduce sensor capacitance.

Specifications of the Double SOI wafers

	1st(SOITEC)	2 nd (Shinetsu)
SOI1	p-type 88 nm,	p-type 88 nm,
	< 10 Ω •cm	< 10 Ω •cm
BOX1	145 nm	145 nm
SOI2	p-type 88 nm,	n-type 150 nm,
	< 10 Ω •cm	3-5 Ω •cm
BOX2	145 nm	145 nm
	n-type	p-type
Substrate	Cz, 725um,	FZ, 725um,
	~700 Ω •cm	> 5.0 k Ω •cm

N-type middle Si layer has lower sheet resistance with negative SOI2 layer voltage, since P-type layer become depleted.

Cross Talk Reduction in Double SOI

Cross Talk from Clock line

Cross Talk between Circuit and Sensor is reduced to 1/20.

(Lu Yunpeng (IHEP))

Radiation Hardness Improvement in DSOI

(Id-Vg Characteristics v.s. SOI2 Potential)

5kGy

10kGy 20kGy 100kGy I/O normal Vth
Source-Tie Tr.
L/W =0.35um/5um

By setting Middle Si potential (Vsoi2) to -5V, Id-Vg curve returned nearly to pre-irradiation value at 100 kGy(Si) (10 Mrad).

(U. of Tsukuba)

Radiation Hardness Improvement in DSOI

(Id-Vg Characteristics v.s. SOI2 Potential)

2kGy

5kGy

10kGy 20kGy 100kGy I/O Normal Vt Source-Tie L/W =0.35um/5um

Threshold voltage shift is not so sensitive to radiation dose and the middle Si potential. However, Drain Current decreases by 80% at 100 kGy(Si).

Dose Increase in Lightly Doped Drain (LDD) Region

- Major cause of the drain current degradation in PMOS with radiation is Vth increase at gate edge due to positive charge generation in spacer.
- Charge in spacer control the Vth of the parasitic transistor.
- To reduce this effect, lightly doped drain (LDD) dose should be increased.
- Present process has rather low dose in LDD region to aiming lower power.

Recovery of the drain current reduction

By increasing Implantation dose of PLDD region 6 times higher than present value, the degradation is reduced from 80% to 20% at 112 kGy(Si).

Ref.) I. Kurachi, et al. "Analysis of Effective Gate Length Modulation by X-Ray Irradiation for Fully Depleted SOI p-MOSFETs, IEEE Trans. on Elec. Dev. Vol. 62, Aug. 2015, pp. 2371-2376.

3rd refinement: Pinned Depleted Diode (SOIPIX-PDD)

There are relatively large surface leakage current.

Leakage current
between BOX and
Substrate is pinned
with BPW while
avoiding punch throw
with deep BNW layer.

→ See Kawahito's Talk

(H. Kamehama et al., 'A Low-Noise X-ray Astronomical SOI Pixel Detector Using a Pinned Depleted Diode Structure, to be published in Sensors.)

Energy Resolution: X-ray Spectrum of ⁵⁵Fe using the SOIPIX-PDD

Gain = 70 μV/e-Noise = 11.0 e-Dark Current = 56 pA/cm2 @-35°C

Very good Resolution (low noise) and no tail in the peak (showing perfect charge collection efficiency).

(Shizuoka & Kyoto Univ.)

SOI Photon-Imaging Array Sensor (SOPHIAS) for X-ray Free Electron Laser (XFEL) SACLA

Utilization of SOPHIAS has been started for various experiments in SACLA@RIKEN.

- Dynamics of Atomic Structure
- Direct Observation of Chemical Reactions
- etc.

X-ray Tube Cu 22kV 400uA 5000 frames accumulated (total exposure: 500 s) Sensor-detector:2m

Tracking Resolution: High-Energy Beam test @Fermi National Accelerator Lab.

Two kinds of SOIPIX-DSOI detectors are used:

- FPIX2 x 4: 8 μm square pixel detector
- SOFIST1 x 2: 20 μm square pixel detector

Tracking Resolution (cont.)

(K. Hara et al., Development of Silicon-on-Insulator Pixel Detectors, Proceedings of Science, to be published)

Summary

- Three main refine techniques are developed in the SOIPIX process.
- Buried Well is very effective to shield high-voltage for sensor region.
- Double SOI technology is excellent in shielding and radiation hardness improvement.
- With Pinned Depleted Diode (PDD) structure, Leakage current is reduced to less than 60 pA/cm², and very good charge collection efficiency and low noise is obtained.
- Large SOPHIAS detectors are being used in many Synch. Rad. Exp.
- Tracking resolution of 0.7 μm is achieved with 8 μm SOI pixel.
- Many kinds of SOI radiation detectors are being developed for various scientific applications.

Thank you for your kind attention!

