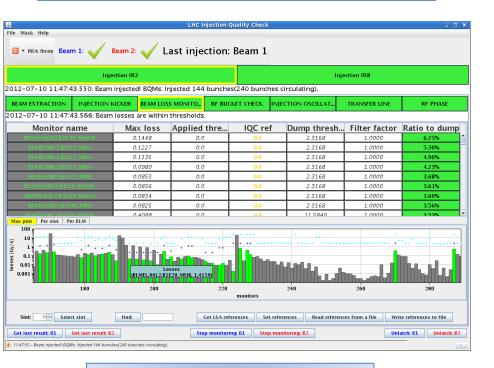
LHC INJECTION

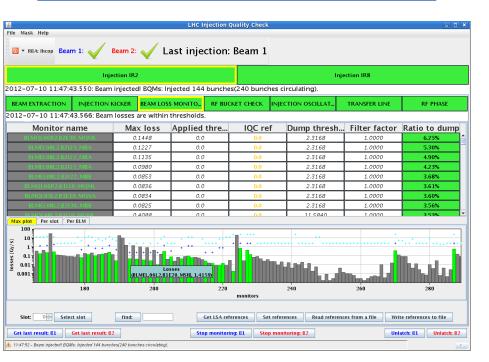
W. Bartmann, M.J. Barnes, C. Bracco, F. Burkart, E. Carlier, B. Goddard, V. Kain, R. Steerenberg, L. Stoel, F. Velotti, C. Wiesner, C. Xu

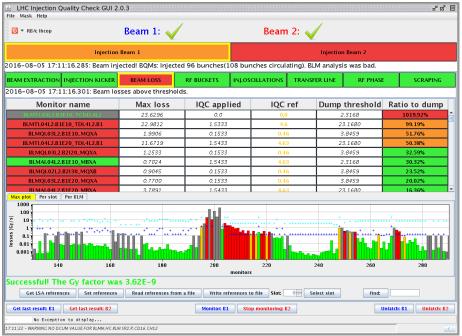

7th Evian workshop 13th - 15th Dec. 2016

Outline

- Injection loss analysis
 - Run1 vs Run2
 - Transverse vs. longitudinal
 - Protons vs. ions
 - Diamonds
 - New IQC thresholds
- Injection process how to improve?
- Suggested batch spacings for MKP/MKI for 2017

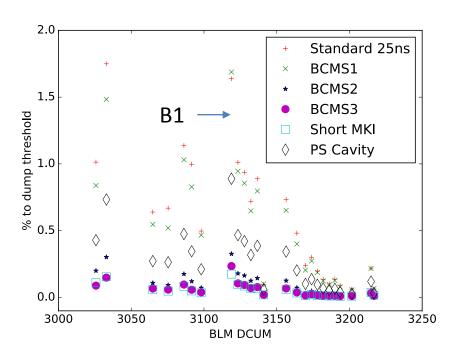
Injection losses from run 1 to run 2

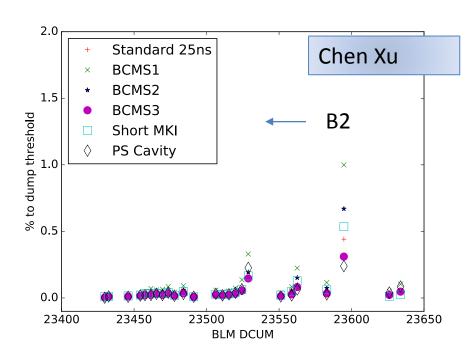

Run 1: 144 bpi, 25 ns, 2012


Dominated by TL shower

Injection losses from run 1 to run 2

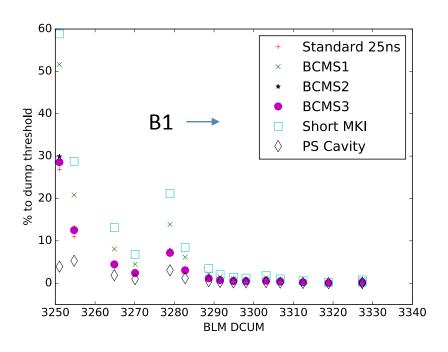
Run 1: 144 bpi, 25 ns, 2012

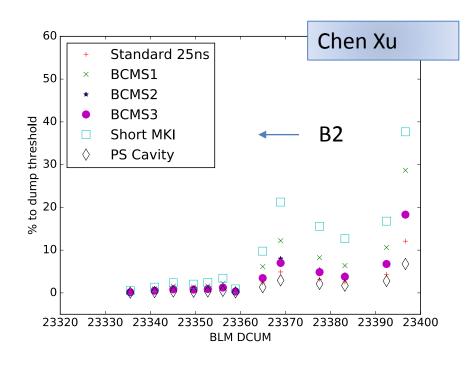

Run 2, 96 bunches



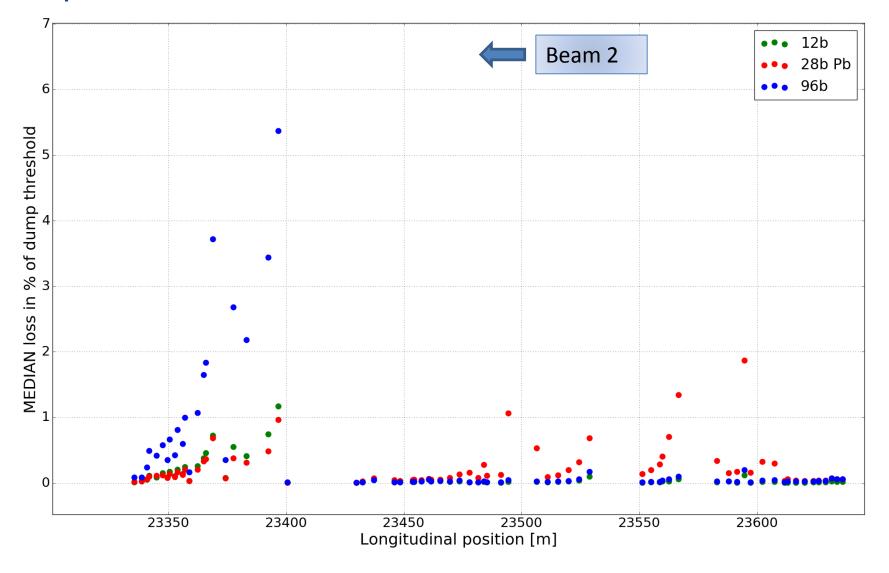
Dominated by TL shower

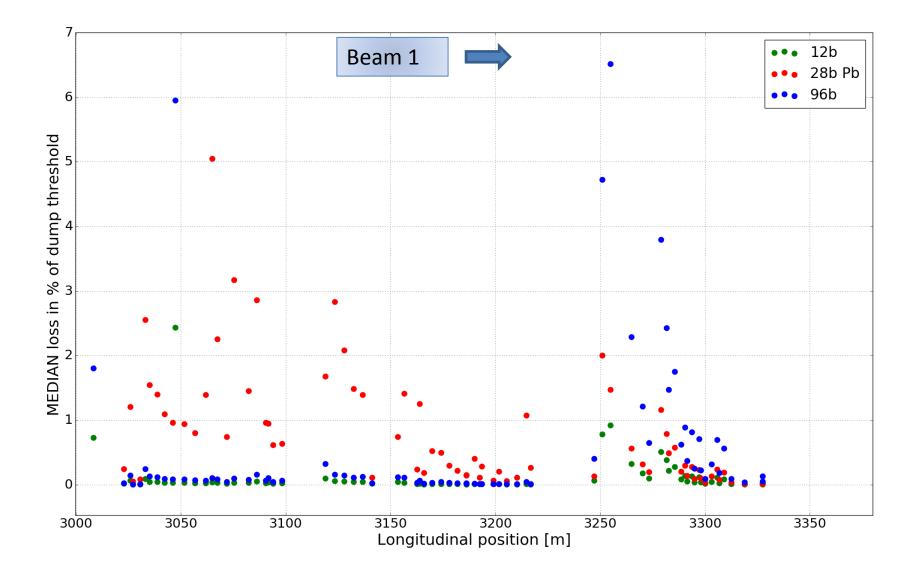
Dominated by longitudinal losses


Transverse inj. losses (until Sept) – Median

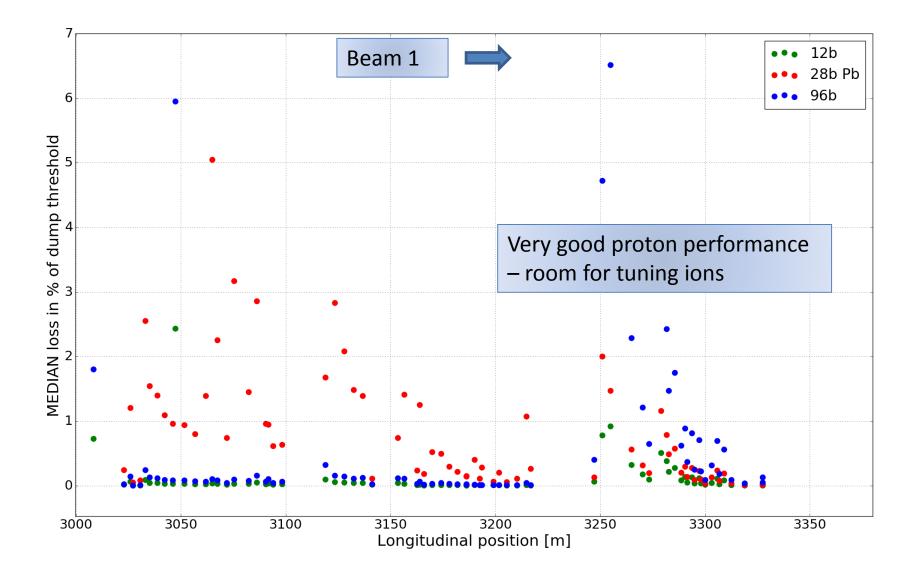


- Transverse losses within 2% of dump threshold
- Better line stability and straightforward steering in Run 2 wrt Run 1
- B1/B2 differences seen due to different TCDI to BLM geometries
- No issue foreseen with 288 b


Longitudinal inj. losses (until Sept) – Median



- Longitudinal losses mainly dependent on beam type/configuration
- Reduction of factor 10 when switching on 2nd 40 MHz cavity at PS extraction


Sept – Dec 2016

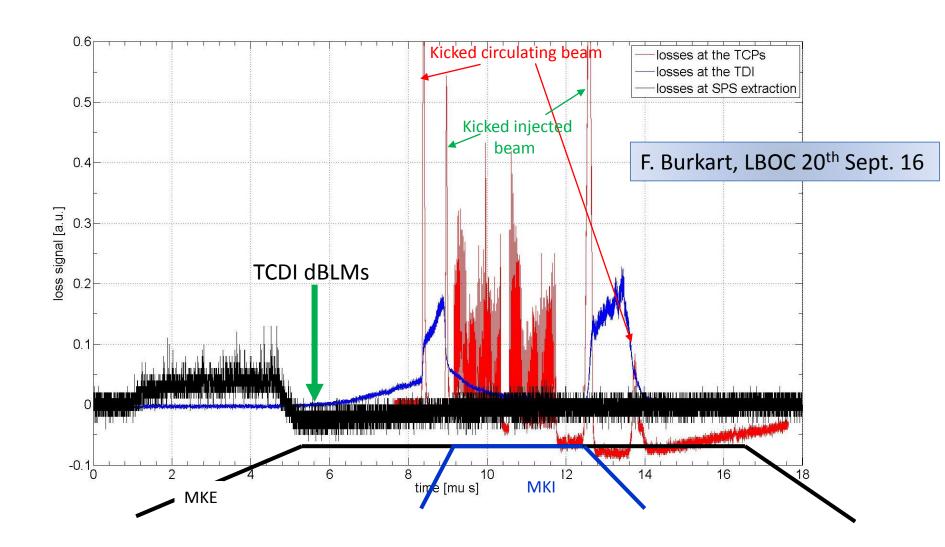
Sept – Dec 2016

Sept – Dec 2016

Injection losses in operation

```
19:09:59 - Warning on: BLMTI.04L2.B1E20_TDI.4L2.B1, integration time: 320 us, losses = 7.010515E00, threshold = 2.316800E01, ratio = 30% 19:09:59 - Warning on: BLMTI.04L2.B1E20_TDI.4L2.B1, integration time: 80 us, losses = 7.063027E00, threshold = 2.316800E01, ratio = 30% 19:09:59 - Warning on: BLMTI.04L2.B1E20_TDI.4L2.B1, integration time: 40 us, losses = 7.075742E00, threshold = 2.316800E01, ratio = 31% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 2560 us, losses = 1.065407E01, threshold = 2.316800E01, ratio = 46% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 640 us, losses = 1.342958E01, threshold = 2.316800E01, ratio = 58% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 320 us, losses = 1.390080E01, threshold = 2.316800E01, ratio = 60% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 80 us, losses = 1.416791E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 1
```

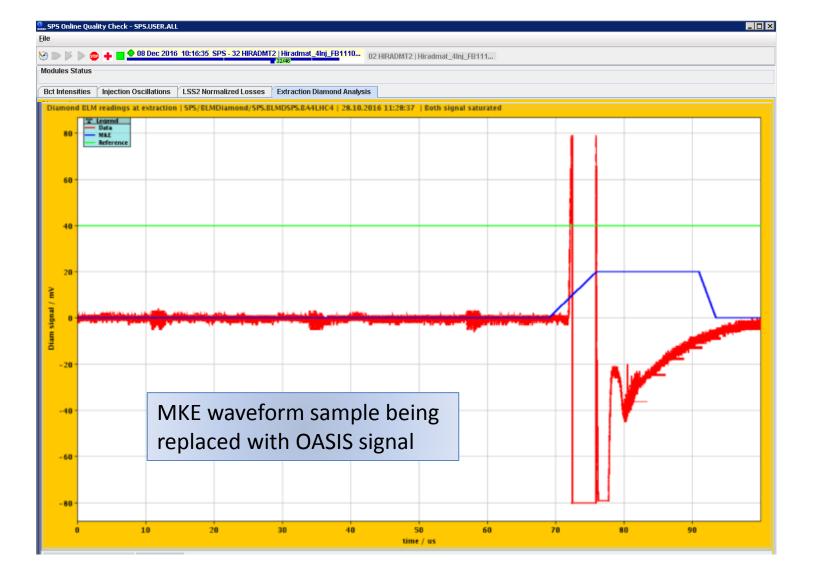
Injection losses in operation - IQC


```
19:09:59 - Warning on: BLMTI.04L2.B1E20_TDI.4L2.B1, integration time: 320 us, losses = 7.010515E00, threshold = 2.316800E01, ratio = 30% 19:09:59 - Warning on: BLMTI.04L2.B1E20_TDI.4L2.B1, integration time: 80 us, losses = 7.063027E00, threshold = 2.316800E01, ratio = 30% 19:09:59 - Warning on: BLMTI.04L2.B1E20_TDI.4L2.B1, integration time: 40 us, losses = 7.075742E00, threshold = 2.316800E01, ratio = 31% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 2560 us, losses = 1.065407E01, threshold = 2.316800E01, ratio = 46% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 640 us, losses = 1.342958E01, threshold = 2.316800E01, ratio = 58% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 320 us, losses = 1.390080E01, threshold = 2.316800E01, ratio = 60% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 80 us, losses = 1.416791E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 19:09:59 - Warning on: BLMTI.04L2.B1E10_TDI.4L2.B1, integration time: 40 us, losses = 1.417882E01, threshold = 2.316800E01, ratio = 61% 1
```


Make IQC more useful for operation - thresholds

- Simplify internal thresholds which define the colour code
- Transverse losses scale relatively well with injected intensity
 - Ok as it is, enough margin for 288 b and 4.5 sig TCDI settings
- Longitudinal losses are much more dependent on beam type (Standard vs BCMS, 12b) and equipment configuration (PS cavities for bunch rotation, MKI flattop length) than number of bunches injected
 - TDI:
 - Loss < 30% green
 - Loss between 30% and 50% orange
 - Loss > 50% red
 - MQX:
 - Loss < 10% green
 - Loss between 10% and 25% orange
 - Loss > 25% red

Make IQC more useful for operation – include diamonds

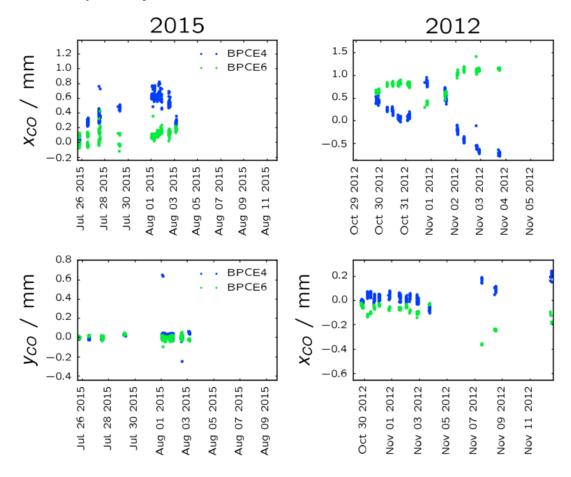

Overview dBLMs around LHC

F. Burkart, LBOC 20th Sept. 16

	Position	Responsible HW	Contact	Read-out	Data stored
SPS extraction	TPSG	BE-BI-BL	TE-ABT	Scope + FESA	PM
Transfer lines	TCDIh	BE-BI-BL	TE-ABT	Scope + FESA	PM
LHC injection	TDI	BE-BI-BL	TE-ABT	Scope + FESA	PM
Collimation	ТСР	BE-BI-BL	BE-BI (data taking), TE-ABT (@ injection) and TE-MPE (@ flat top)	ROSY + Scope	BE-BI server, EOS
Crystal collimation	Crystal	BE-BI-BL	Collimation	ROSY	MD only
Abort gap population	BGI	BE-BI-BL	TE-MPE	ROSY	-
LHC extraction	TCDQ	BE-BI-BL	TE-MPE	Scope	locally

^{*} Many more: LINAC4, PS extraction, HiRadMat, SPS slow extraction TT20, etc....

Diamonds in SPS online monitoring app



Outline

- Injection loss analysis
 - Run1 vs. Run2
 - Transverse vs. longitudinal
 - Protons vs. ions
 - Diamonds
 - New IQC thresholds
- Injection process how to improve?
- Suggested batch spacings for MKP/MKI for 2017

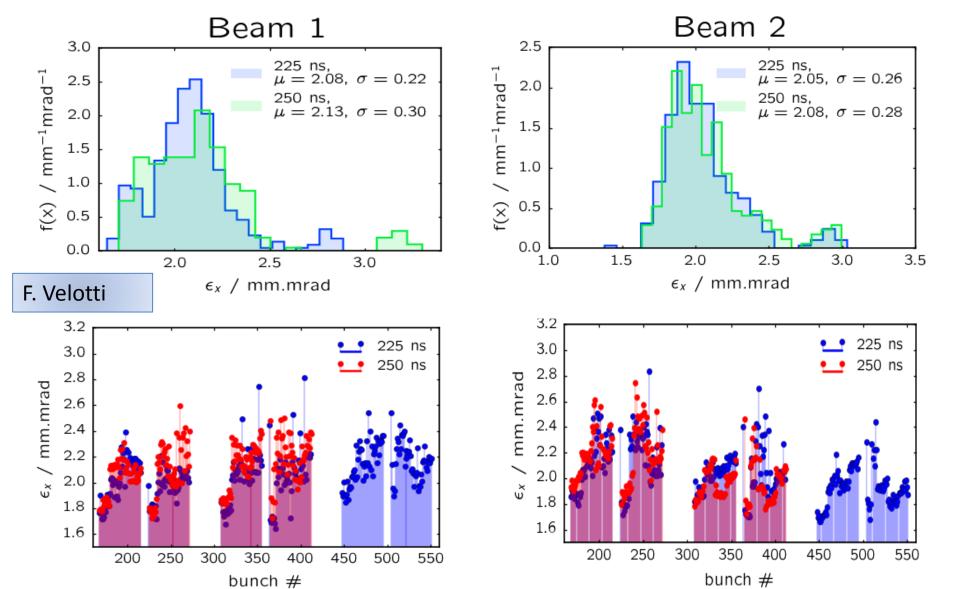
Injection process

- Not clearly distinct in availability chart but usually a big contributor of idle time
- Related to stability of injectors?

Injection process

- Not clearly distinct in availability chart but usually a big contributor of idle time
- Related to stability of injectors?

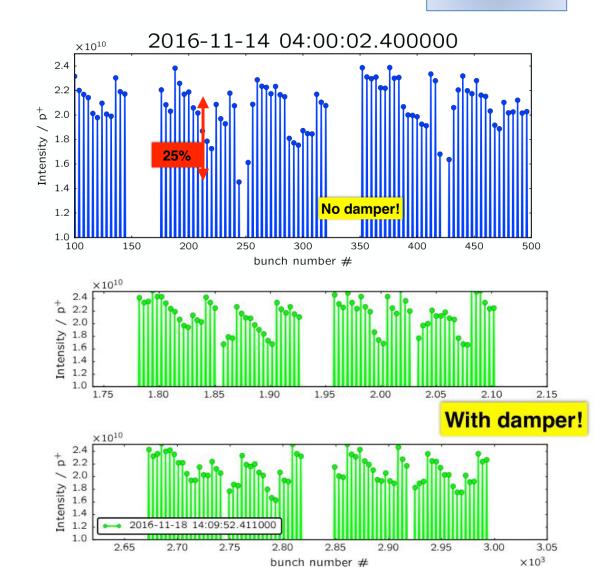
Injectors well stable over several hours! 2015 BPCE4 BPCE4 0.04 0.4 BPCE6 BPCE6 0.02 x_{co} / mm 0.3 0.00 0.2 -0.020.1 -0.040.0 -0.06-0.122:00:00 22:00:00 22:00:00 23:00:00 05:00:00 11:00:00 17:00:00 23:00:00 05:00:00 11:00:00 17:00:00 23:00:00 04:00:00 10:00:00 16:00:00 04:00:00 10:00:00 16:00:00 04:00:00 17:00:00

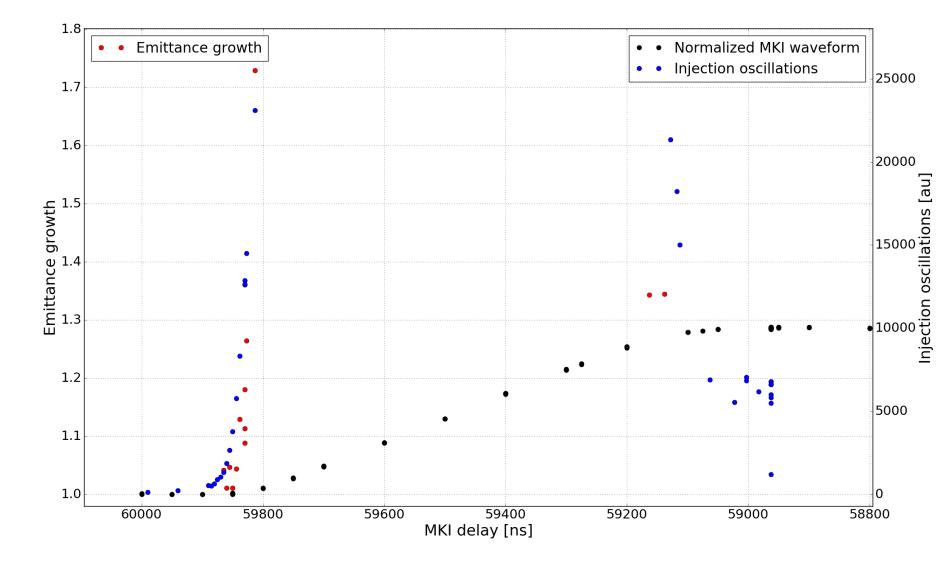

Injection process

- Aim to minimize waiting time at LHC injection for beam
- Ideal would be automatic preparation of LHC beam in injectors as soon as LHC starts ramp down
- Could fall back to prepared supercycle for LHC filling
 - Some disadvantages like maintenance of several supercycle templates
- Should not impact other physics program like for dedicated LHC filling cycle
- Impact on MD program in injectors only if LHC is not ready to take beam as planned
- Daily tuning of LHC beams in injectors is very valuable and lead to impressive beam quality at SPS extraction – increased monitoring of beam quality is ongoing, e.g. SPS online monitoring tool with injection oscillations, intensity, diamond loss data and also foreseen for the PS complex → should help for automatization of LHC beam preparation

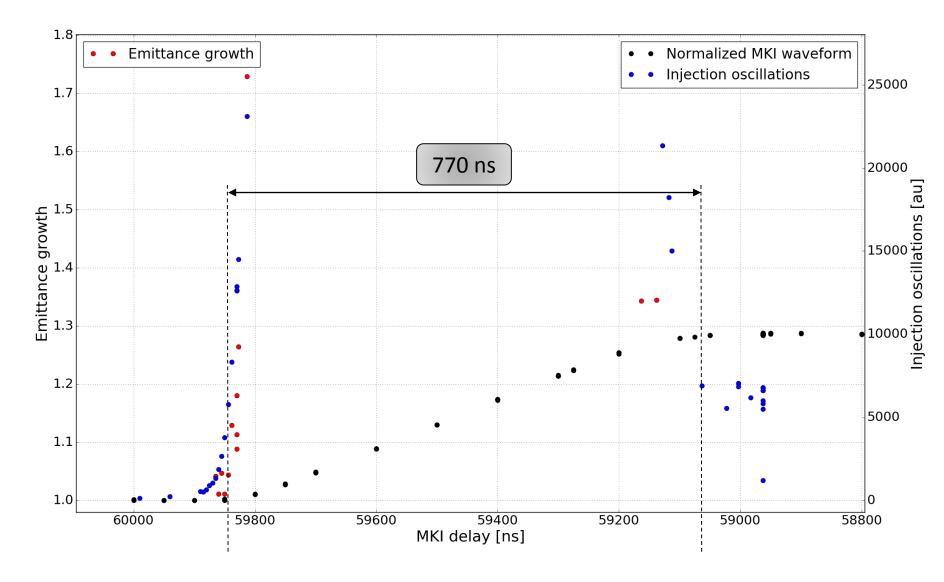
Outline

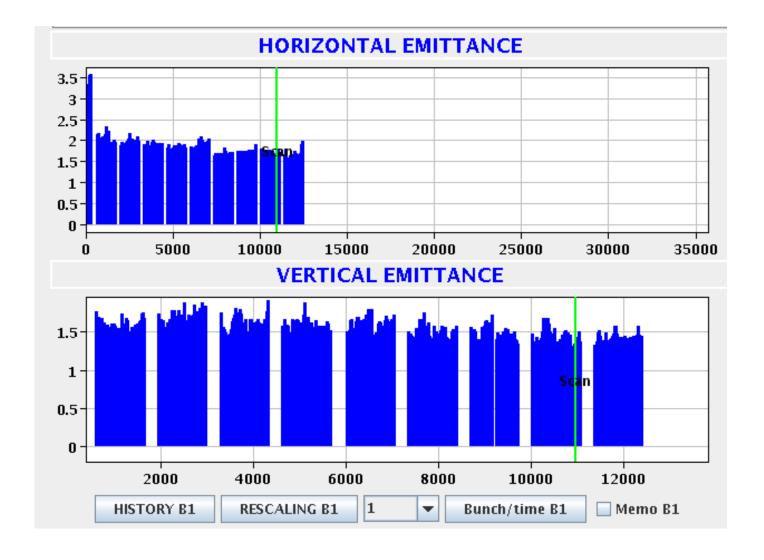
- Injection loss analysis
 - Run1 vs. Run2
 - Transverse vs. longitudinal
 - Protons vs. ions
 - Diamonds
 - New IQC thresholds
- Injection process how to improve?
- Suggested batch spacings for MKP/MKI for 2017


MKP: 250 ns vs 225 ns batch spacing


200 ns batch spacing SPS?

F. Velotti


- Were running for weeks
 without damper in the SPS
 which was detrimental for
 beam quality of few
 bunches but accepted by
 LHC
- Can still see some effect with damper but much improved
- More sensitive to synchronisation drifts of injection kicker switches


800 ns batch spacing LHC?

800 ns batch spacing LHC?

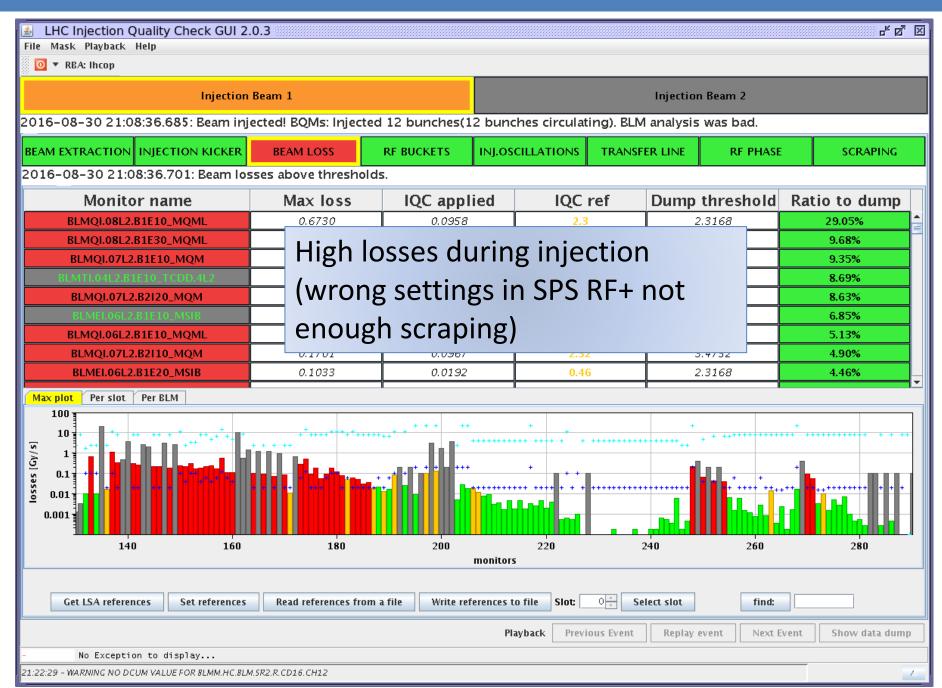
800/200 ns with trains

Conclusions

Injection losses were dominated by satellites on TDI until improvement of PS-SPS transfer

- Last two months of proton run with very low losses
 - Median transverse < 1%
 - Median longitudinal < 7%
 - Maxima a factor 2-3 higher
- No issues expected with 288 b
- Ion run losses on the higher side in the transverse plane would have needed some more tuning time
- Pure numbers in IQC indicated well the injected beam quality in run 2
 - Threshold simplification for IQC suggested based on loss scenarios
 - In a further step we also aim at reducing its visual overstimulation
- Diamonds should migrate from being only available for experts to IQC
 - Already working for SPS extraction
- Injection process fully automatized to minimize idle time at injection?
- 800/200 ns for MKI/MKP look promising and are suggested for 2017

Extra


Recent injections

TCTPV issue

During injections of 72b:

TCTPV.4R8.B2 at ± 25 mm Per slot | Per BLM 1000 100 losses [Gy/s] 320 360 monitors Per slot Per BLM TCTPV.4R8.B2 at ± 27.3 mm 1000 100 losses [Gy/s] 10 340 360 monitors Per slot Per BLM TCTPV.4R8.B2 at ± 29 mm 100 losses [Gy/s] See F. Burkart in LIBD, 14th June 2016 340 monitors

