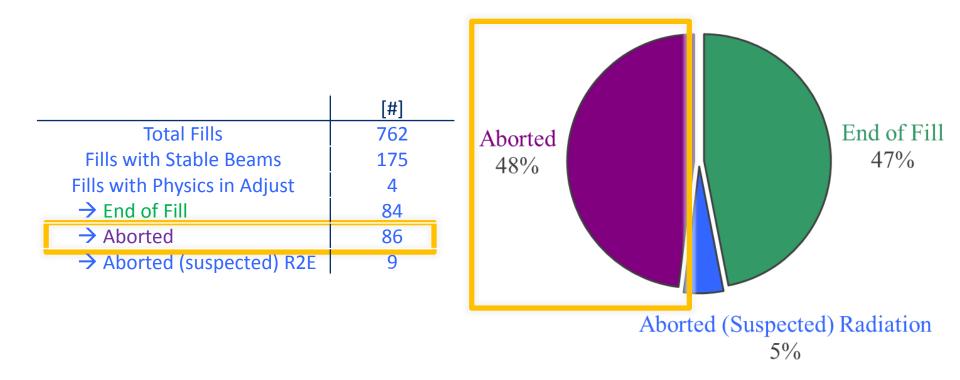


Recurring sources of premature dumps

I.Romera, M.Zerlauth

Acknoweldegments: D.Nisbet, G.Papotti, M.Albert, A.Apollonio, B.Todd, L.Ponce, A.Lechner, V.Montabonnet, I.Josifovic, A.Antoine and many more

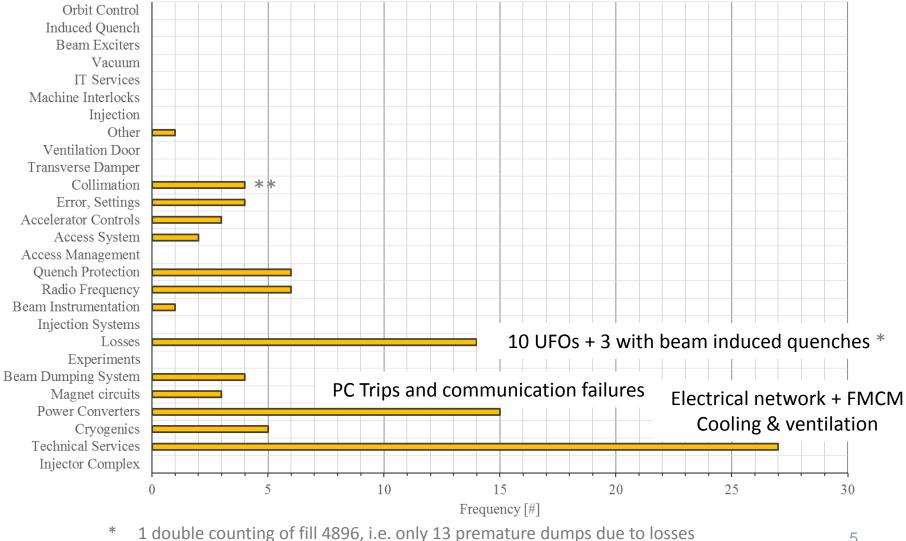
7th Evian Workshop 13-15th December 2016



- Statistics of aborted fills
- Premature dump causes
- Analysis of top 3 recurring faults

Conclusions

Aborted fills in Stable Beams

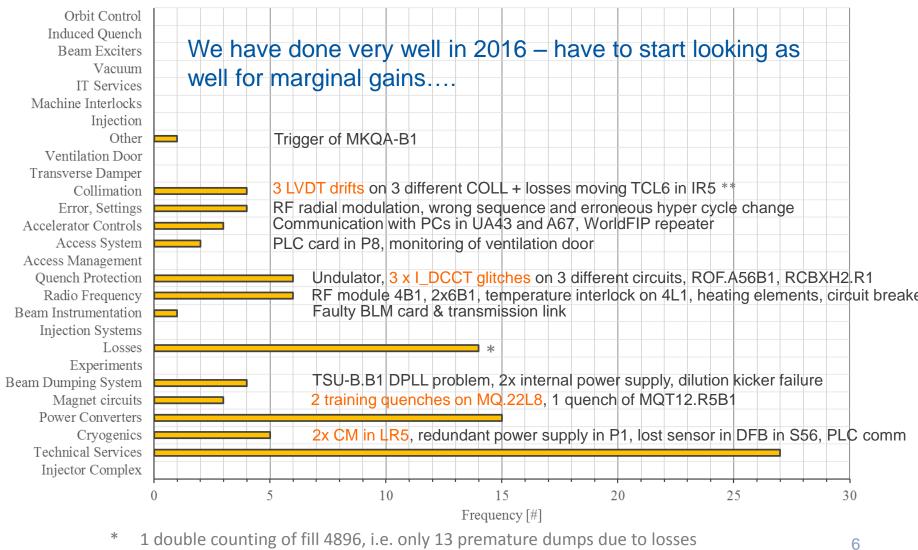


- 95 fills which did not reach the end of fill = premature beam dumps
- Following analysis will only consider beam aborts from Stable Beams (hence sometimes different counts wrt other presentations)
- 9 fills flagged due to radiation (see talk of Salvatore D.)

CERN

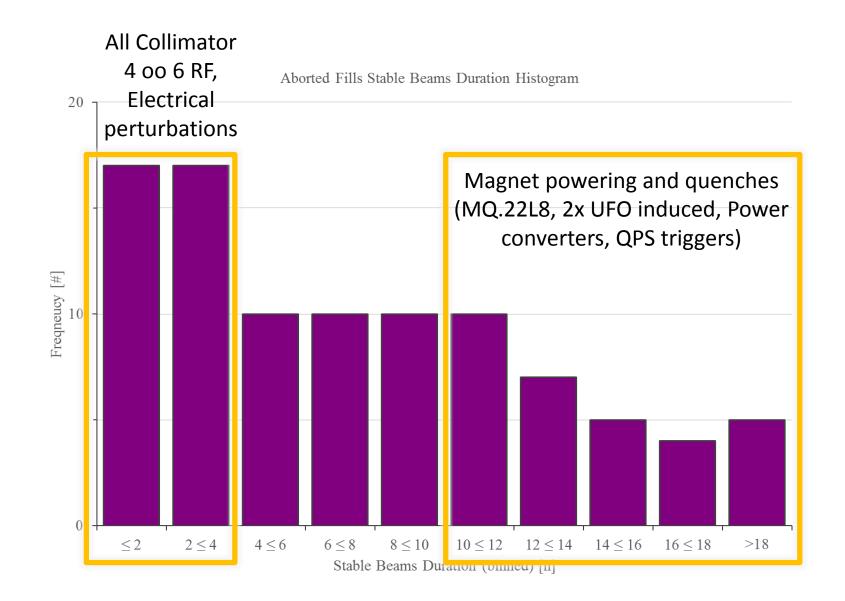
Premature dumps: Root cause

Stacked Pareto - Root Cause Frequency

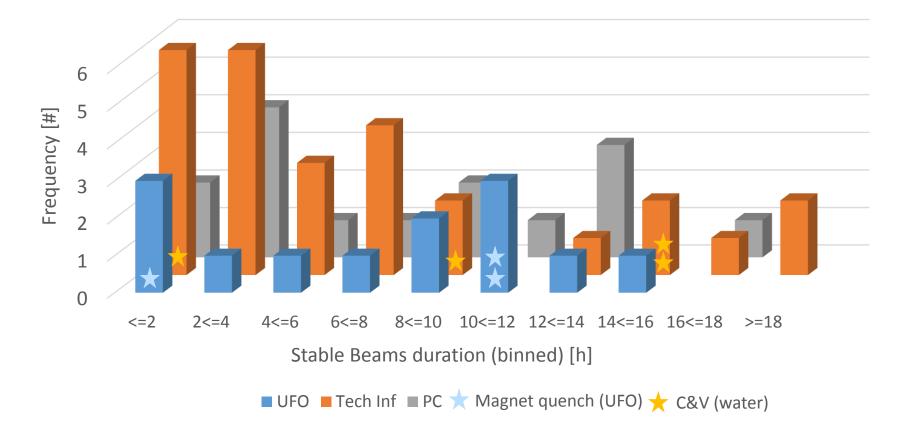


** 1 case with (UFO) losses during TCL6 movement

CERN


Premature dumps: Root cause

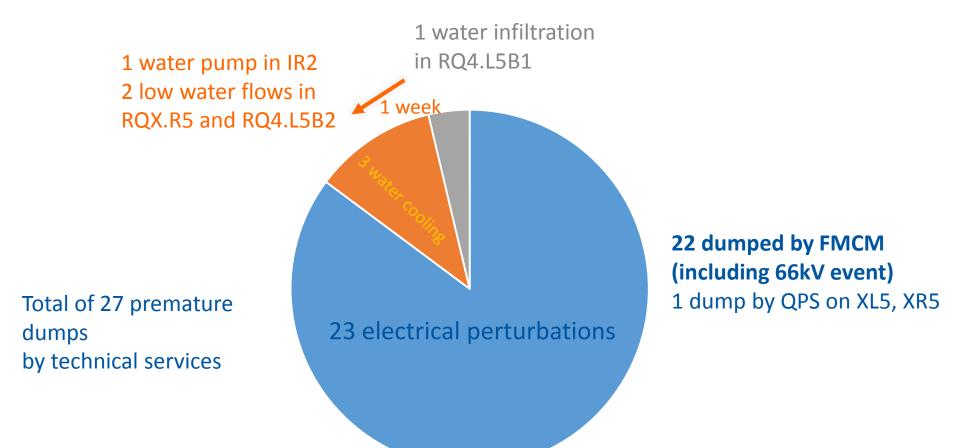
Stacked Pareto - Root Cause Frequency



** 1 case with (UFO) losses during TCL6 movement

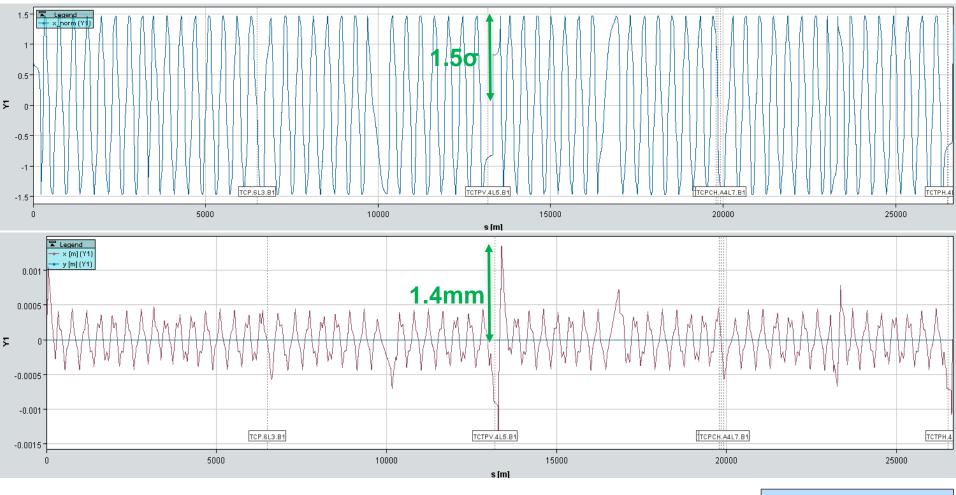
Premature dumps: Duration in SB

Premature dumps: Duration in SB


- No (unexpected) correlation of failures with time in stable beams
- Electrical perturbations expected to be constant in time ->
 exponential decay of SB time (sensitivity of converter and FMCM
 only a function of energy)

- Statistics of aborted fills
- Premature dump causes
- Analysis of top 3 recurring faults
 - Technical Services
 - Power Converters and communication failures
 - UFOs
- Conclusions

Technical Services



- Fast Magnet Current Change Monitors designed to interlock on unacceptable current changes in normal-conducting magnets (12 systems in LHC)
- Proves to be as well most sensitive detection system for electrical perturbations 10

Failure simulations: RD1 failure at 6.5TeV

6.5TeV, β*=0.4m, current change RD1.LR1 **+250mA**

CERN

Maximum excursion $\simeq 1.5\sigma$

Courtesy of M.Valette

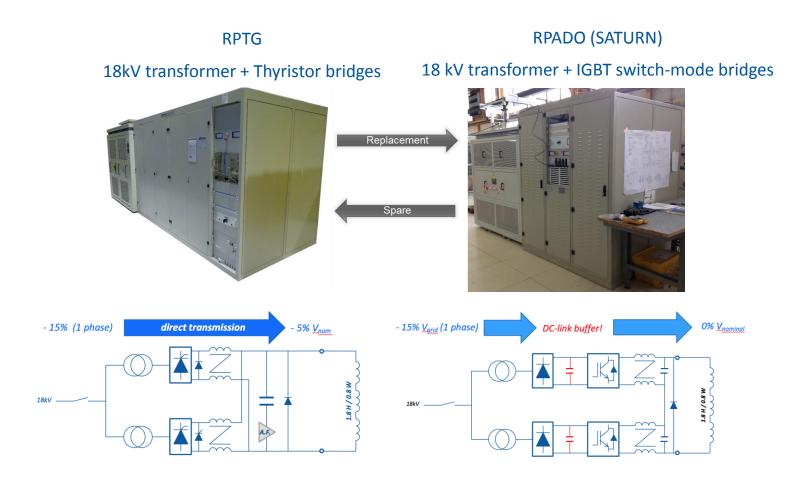
Maximum excursion allowed at TCT (IR1 and IR5) = 1σ

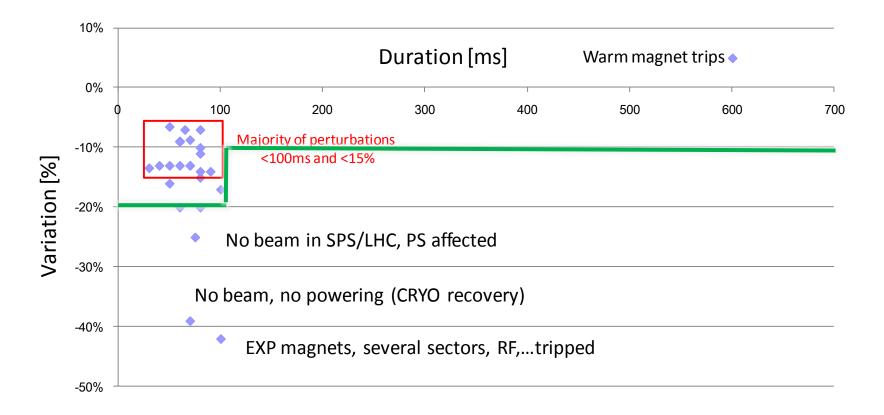
Electrical disturbances and FMCM dumps

Fill	Signal / Threshold												
	RD1. LR1	RD1. LR5	RD34. LR3	RD34. LR7	RQ5. LR3	RQ5. LR7	RQ4. LR3	RQ4. LR7	RBXWTV. L2	RBXWTV. R2	RMSD-b1	RMSD-b2	
4851		x		х									
4879	х	x	x	х	х	х	х	х	х	х	х	х	
4958		х											
4960		x	x	х	х		x						
4976		x	x	x									
4988		x											
5013		x	х	x									
5026		x	x	х	x	х	х	х					
5028	х	x	x	х	х	x	x	x					
5056	х	x	x	х	х	х	х	x	x	х	х	х	
5107		x											
5108		x	x	x									
5110		x	х										
5196		x		x									
5206		x	x	х									
5210		x											
5213		x											
5219		x											
5251		x	x	x									
5266		x	x	x									
5405		x	x		x		x						
5450		x										12	

Electrical disturbances and FMCM dumps

	18kV					400V Signal / Threshold									
Fill	RD1. LR1	RD1. LR5	RD34. LR3	RD34. LR7	RQ5. LR3	RQ5. LR7	RQ4. LR3	RQ4. LR7	RBXWTV. L2	RBXWTV. R2	RMSD-b1	RMSD-b2			
4851		х		х											
4879	х	х	x	х	х	x	х	х	x	х	х	x	66kV		
4958		х													
4960		х	х	х	х		х								
4976		х	х	х											
4988		х													
5013		х	х	х											
5026		х	х	х	х	x	х	х							
5028	x	х	х	х	х	x	х	х							
5056	x	х	х	х	х	x	х	х	х	х	х	х			
5107		х													
5108		х	х	х											
5110		x	х												
5196		х		х		22 FMCM triggers at Stable Beams in 2016									
5206		x	x	x	<i>F</i>	All triggers provoked by electrical network perturbations									
5210		х				At least 9 of them with other equipment affected (PC,									
5213		x				RF, CRYO)									
5219		х													
5251		x	x	x											
5266		x	x	х											
5405		Х	x		x		х								
5450		X										10			
												13			


Electrical Perturbations - fill 5196, 5206, 5210


- Impact of network perturbations on converter current strongly dependent on timing, affected phase(s) and network configuration
 - Network of SR1 (network node) much more robust against perturbations than SR5 (fed from 'machine' network of LHC p6)
- Thresholds optimized in 2012, ultimate cure needs new converter type 14

New power converters for RD1 and RD34

- 4 x SATURN supplies in production in Norway (850A/700V)
- First SATURN finished testing in 287
- Replace converters for RD1.LR1, RD1.LR5, RD34.LR3, RD34.LR7 during EYETS

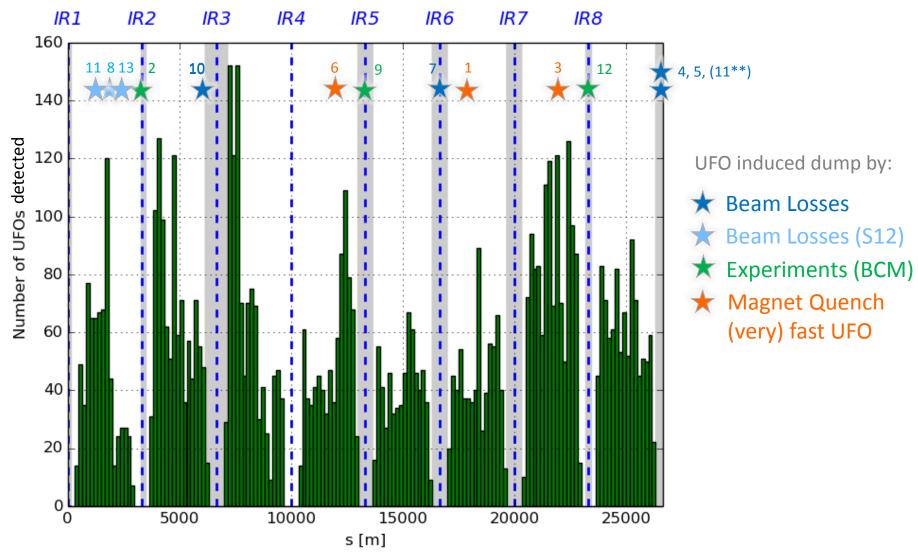
Grid perturbation rejection by SATURN

- 10% continuous, up to 20% on 1 phase or 15% on 3 phase for 100ms
- Tests of SATURN converter in conjunction with FMCM ongoing
 - Recommend to aim for deliberate injection of perturbations or long-term test in 287 or in-situ (SR1/SR5) to confirm performance

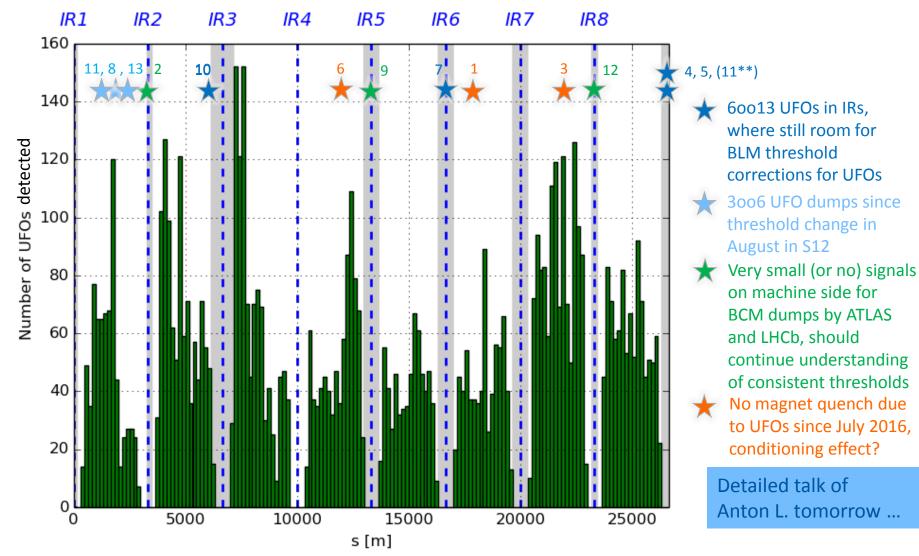
- Statistics of aborted fills
- Premature dump causes
- Analysis of top 3 recurring faults
 - Technical Services
 - Power Converters and communication failures
 - UFOs

Conclusions

Power Converters and Communication


Total of 15 premature dumps RQ10.L8 (FGCs already exchanged by power converters in 2015, investigations in TS without success) 6 faults tagged as R2E candidates in AFT: nterlock interface RCBCH10.R2B1 & RCBCV10.R2B2 ROF.A45B2 (FGC, confirmed) **RSF1.A81B2** RQ10.L1B2 (VS, candidate) Unpowered FGC or entering boot program ROD.A56B2 (VS, confirmed)) ROD.A45B2 (VS, confirmed)) RQT13.L5B1 (VS, candidate) RQT13.R5B1 (FGC, candidate 6 suspected SEUs ROF.A34B1 (external, current lead 4 Internal/external over temperature) Power converter RQT13.L4B1 (internal, water fault at Failures rack level – interface CV) RQ5.LR7 (internal, bad contact?) RD34.LR7 (internal, bad contact?)

2xRCBXH2.R1 PC vs OFB vs QPS settings

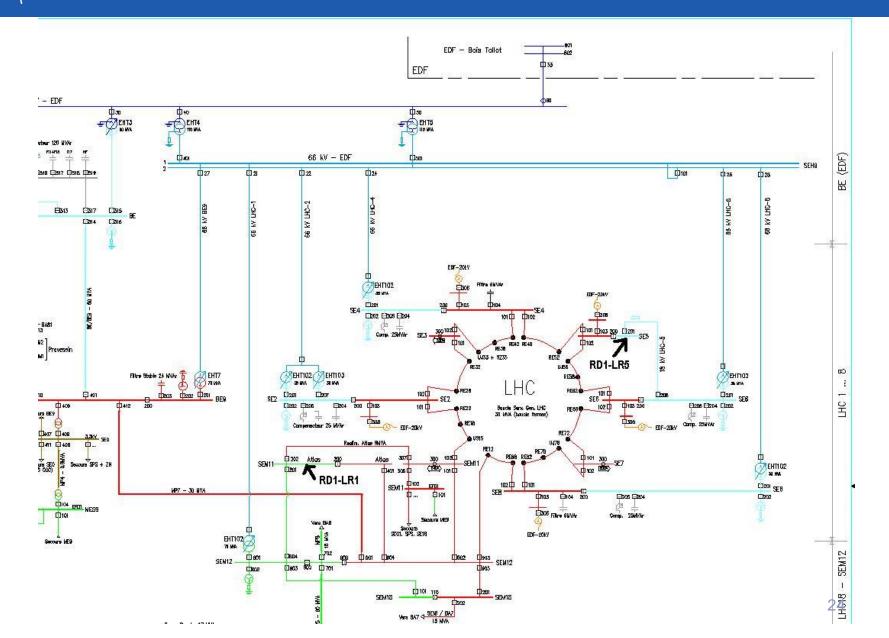

- Statistics of aborted fills
- Premature dump causes
- Analysis of top 3 recurring faults
 - Technical Services
 - Power Converters and communication failures
 - UFOs
- Conclusions

UFOs and beam induced quenches

Note: No spatial distribution in IRs due to many false triggers in UFO buster

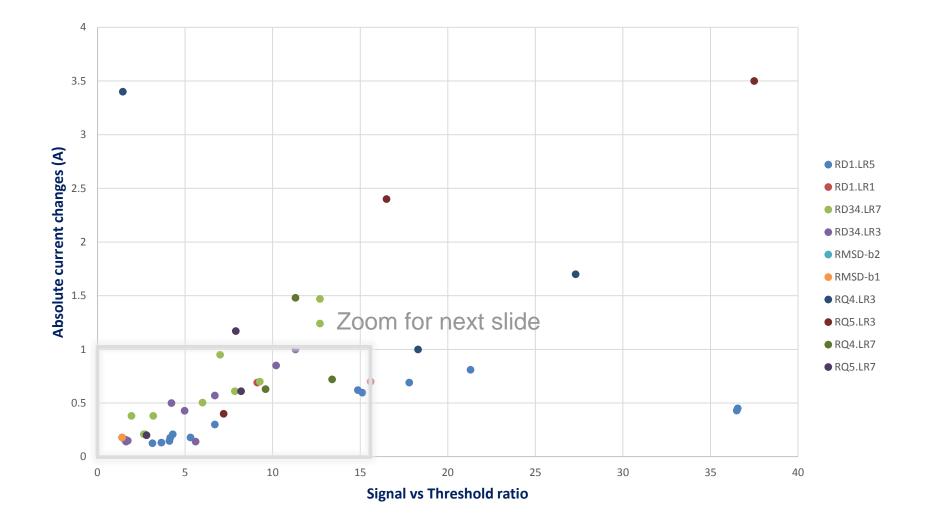
UFOs and beam induced quenches

Note: No spatial distribution in IRs due to many false triggers in UFO buster

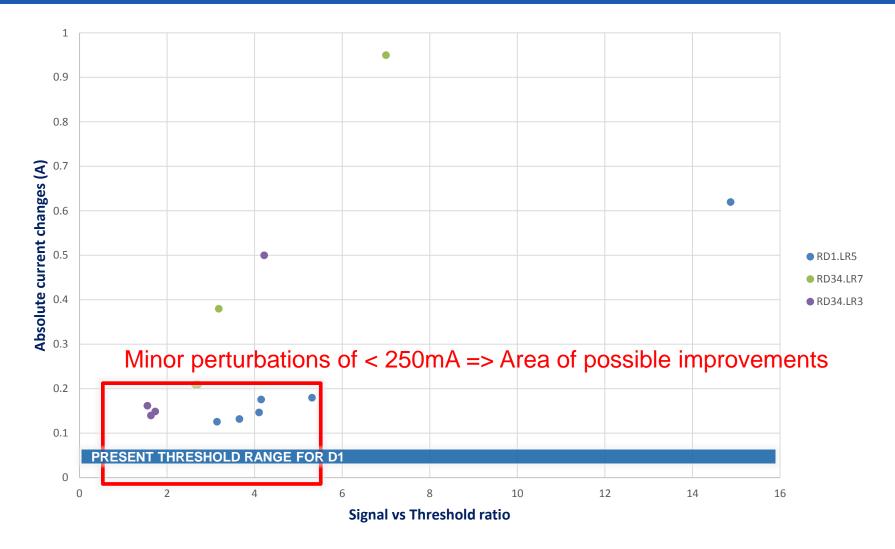


- Continuous consolidation efforts have efficiently mitigated recurrent failure modes observed prior to 2016 (SEU in QPS, auxiliary power supplies in EPC, ...)
 - Little (to no) correlation in remaining fault distribution
- 3 main fault categories remain to be addressed
 - Consolidation of RD1 and RD34 circuits to mitigate additional 15% of 2016 premature dumps
 - Radiation still of concern -> FGCLite, Rad tolerant & redundant 600A PCs, communication issues to be fully understood and mitigated
 - Potential gain for further UFO-BLM threshold optimisations (hoping for conditioning to benefit as well big/fast UFOs?)

SPARES


EL Network at CERN

Can we avoid FMCM triggers?


- Required thresholds slightly vary with optics and energy
- Several solutions were proposed in a dedicated review 46th TE-Technical Meeting in April 2012
 - FMCM Threshold relaxation (RD1, RD34 and RBXWTVL/R)
 - Replacement of RPTG by 4 quadrant switch mode power converters
 - Adding a superconducting inductance
- Outcome:
 - RBXWTVL/R were relaxed by factor 3 and RD34 by factor 1.5 (ECR)
 - Recommendation to replace the 4x RPTG converters for D1 and D34 circuits which will be carried out during EYETS 2016 (i.e. ECR approved at the <u>264th LMC</u>)

Events above thresholds

Events above thresholds

