

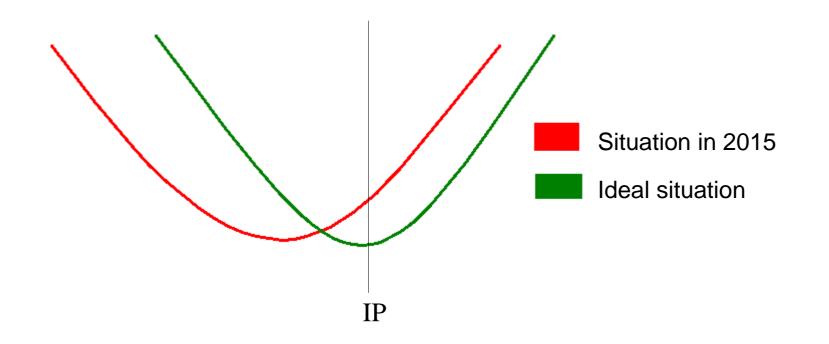
Optics control in 2016

Tobias Persson on behalf of the OMC-team

Many thanks to: G. Baud M. Gasior, M.Giovannozzi, J. Olexa, D. Valuch

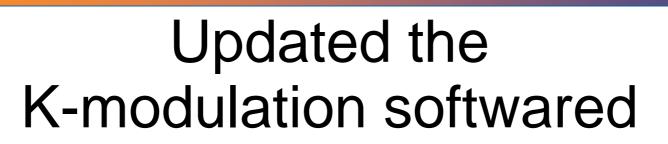
7th Evian Workshop

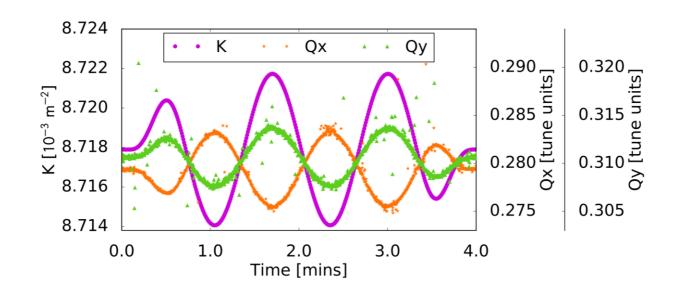
1


- 1. A reminder of the situation in 2015 (proton run)
- 2. What did we change for the 2016 commissioning?
- 3. Results from the 2016 comissioning
- 4. What do we request for the 2017 commissioning?

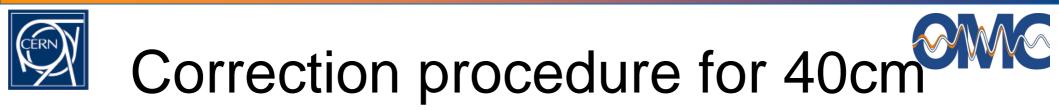
A reminder of the situation in 2015 (protons)

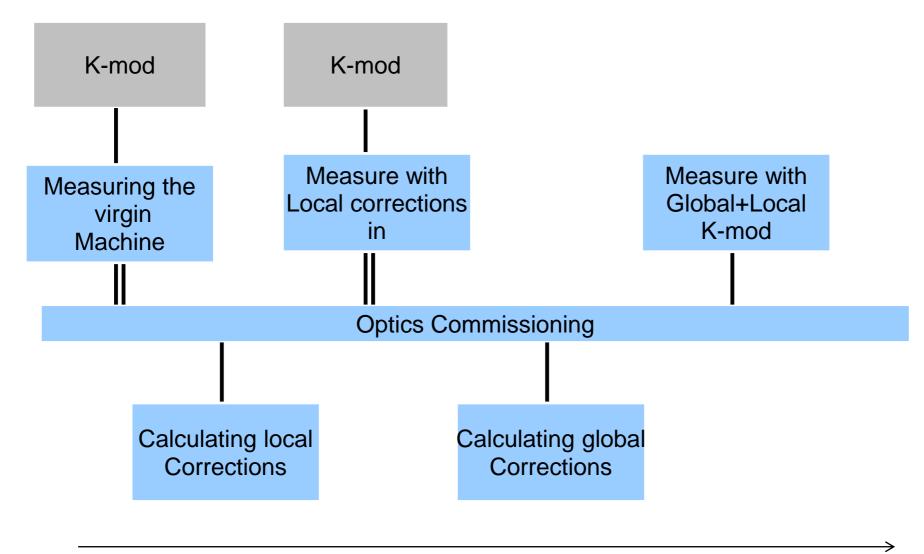
- The β at the IP was larger than design
- The waist was systematically shifted (both IP1 and IP5)



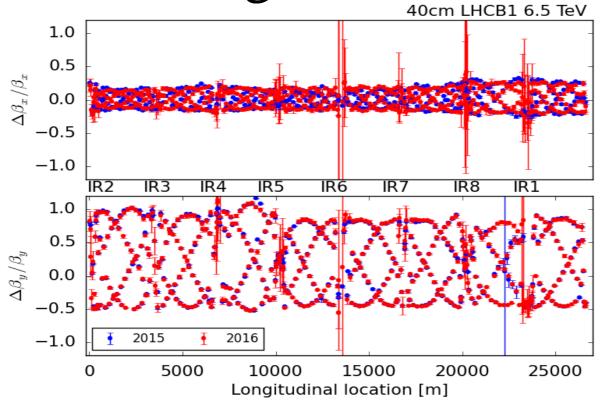

What was new in 2016?

- Using direct constraints in order to correct the β_{IP}
- Online k-modulation
 - Results used for corrections
- Improved global corrections (with the uncertainty of the measurements taken into account)
- β-functions from calibrated BPMs (ballistic optics)
- Automatic calculation of local coupling corrections



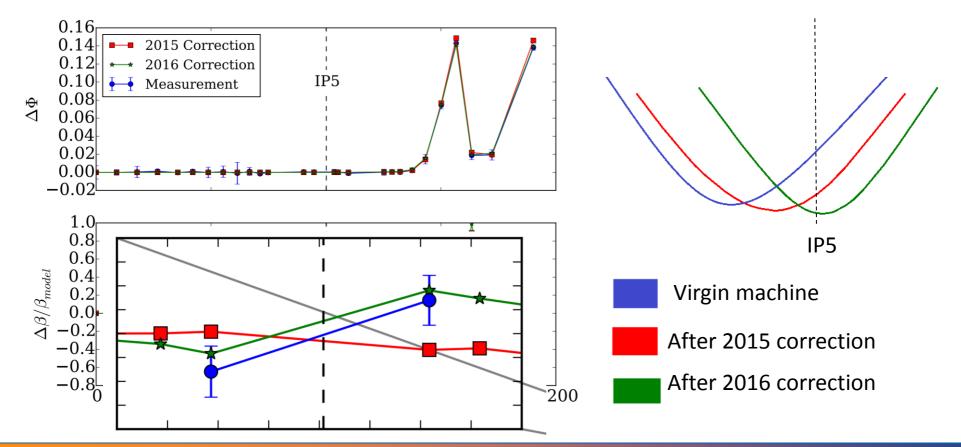


- An upgrade of the K-modulation software
 - IP Driven
 - On-line analysis
 - Results within 1 min after data taking
 - Directly imported as a constraint for the corrections

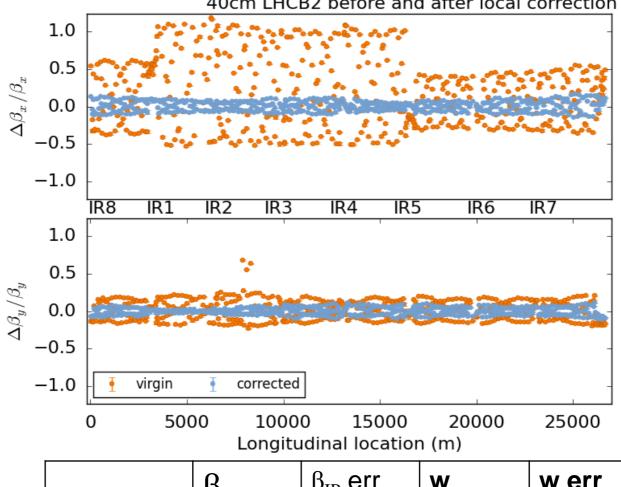


Virgin machine

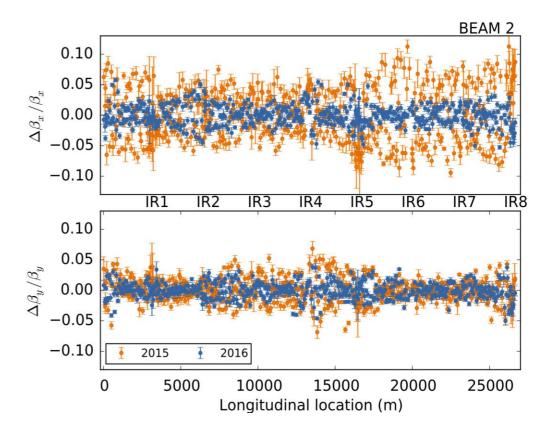
	β_{IP}	$\sigma_{\beta_{\mathrm{IP}}}$	Waist	σw
Average	0.528	0.010	0.168	0.013
RMS beta- beat IP %	<u>52.0</u>			


No major differences between 2015 and 2016

Local corrections

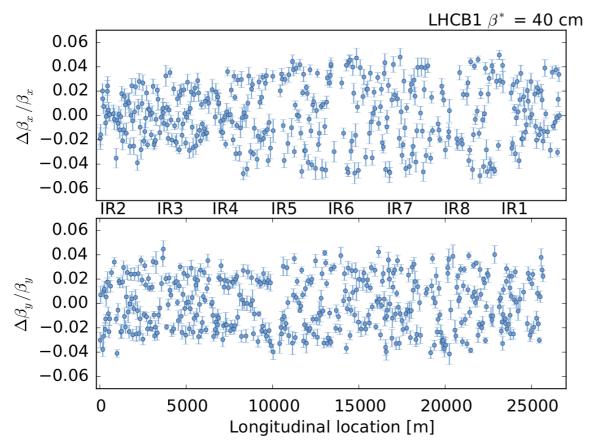

- The local phase corrections are degenerated. Possible to find several combinations that correct the phase
- No guarantee that the waist or $\beta_{\mbox{\tiny IP}}$ is well corrected

After Local Corrections 40cm LHCB2 before and after local correction


	$\beta_{\rm IP}$	β_{IP} err	W	w err
Average	0.396	0.002	0.011	0.009
RMS β-beat in %	<u>5.1</u>			

Final Corrections

IP	β _{IP} [m]	β _{IP} err [m]	Waist [m]	waist err [m]
ip1b1.X	0.398	0.007	0.047	0.009
ip1b1.Y	0.401	0.002	-0.009	0.009
ip1b2.X	0.398	0.001	0.009	0.011
ip1b2.Y	0.402	0.001	0.072	0.010
ip5b1.X	0.399	0.003	-0.009	0.008
ip5b1.Y	0.400	0.001	-0.028	0.010
ip5b2.X	0.395	0.003	0.070	0.013
ip5b2.Y	0.396	0.004	-0.025	0.011
Average	0.403	0.003	0.016	0.010
RMS β- beat in IP %	<u>1%</u>			



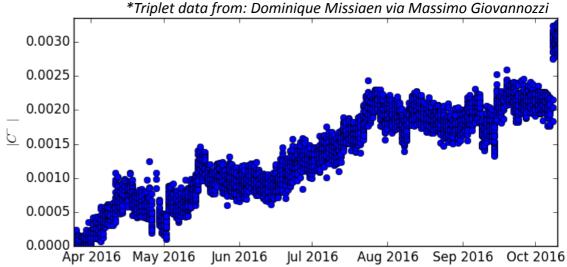
Lowest β -beat in the LHC so far!

Effect of crossing angles

- Optics measured in June (comissioning without crossing angles in April)
 - Difference between the two measurements shown in plot below
- Consistent with simulation of the IR sextupoles errors + crossing angles
- No issue for machine safety
- Could contribute to a luminosity imbalance
- Possible to correct with the IR correctors

An increase of the peak beta-beat in the order of ~**3%** due to crossing angles + IR sextupole errors.

Note that the measurements are taken within months between them! This will also contribute to the difference



Coupling Changes

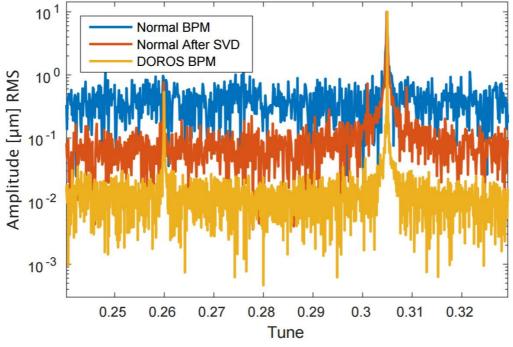
- The measured tilt of the triplets predicts a change in the |C-| of 3*10⁻³ in 6 months
 - The BBQ is not reliable when there is too much noise, at low beta-star, strong octupoles, etc...
 - -> Need for an

easy-to-use-tool to correct coupling after, *i.e.*, a technical stop

We have demonstrated correction of the $|C-| \approx 2*10^{-4}$

Demonstration of coupling correction below the per-mil limit

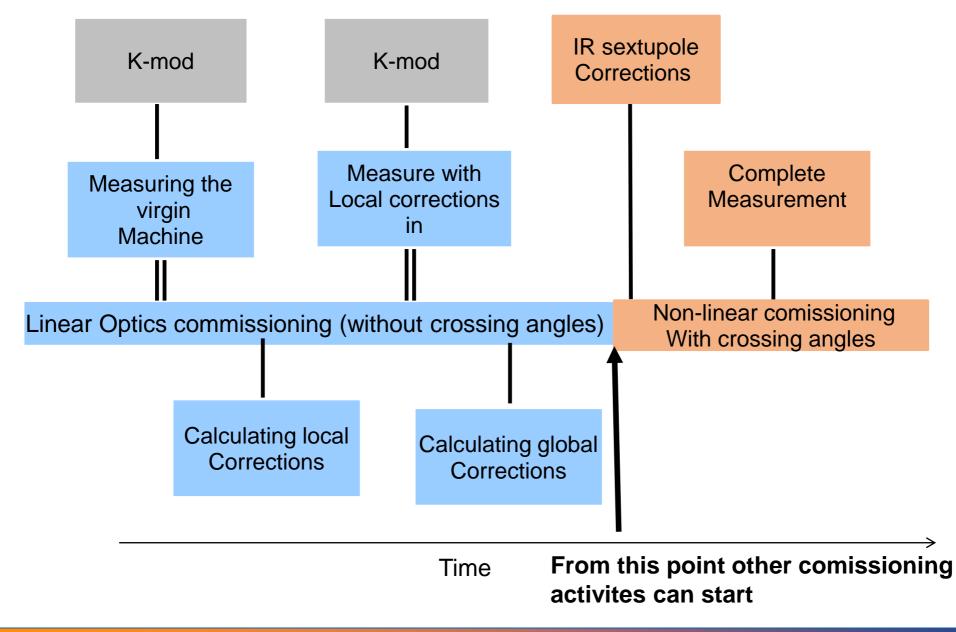
in the LHC



Towards a new coupling tool

- Uses the ADT as an AC-dipole
 - Can excite individual bunches without emittance increase
- Data Recorded with DOROS-BPMs or/and Normal BPMs
- Succesfully demonstrated in MD
- The goal is to have a very first version for the 2017 comissioning

2017

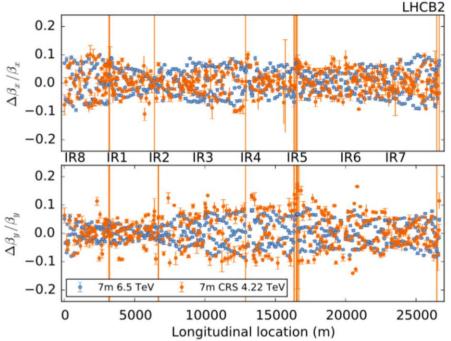

2017 Commissioning

- Number of shifts estimated for linear optics
 - Optics unchanged ≈1 shift (revalidation)
 - 2016 ATS ≈2 shifts
 - New ATS or Nominal ≈3 shifts
- Nonlinear comissioning
 - 2 shifts, see E. Maclean talk in this session
- No difference for the optics corrections with ATS or Nominal
- Additional requests:
 - Automatic coupling correction commissioning ≈1 shift (distributed)
 - Ballistic optics ≈ 0.5 shift

Correction 2017 (new optics)

When should we change to collision tunes?

 Important that the coupling is well corrected during the squeeze


-> Can decide later when in the squeeze to change the tunes

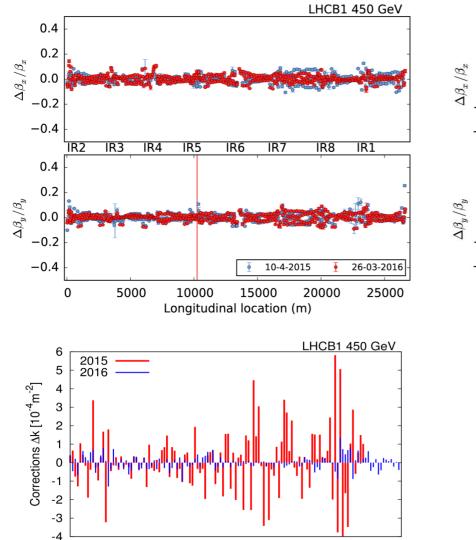
- Pros to do it at the final β^* :
 - Provide more margins for coupling errors through the squeeze (however the smalles β* is in general the most challenging)
- Cons:
 - Will cross resonances at the smallest β^{\ast}
 - Could be simulated but should be checked with beam

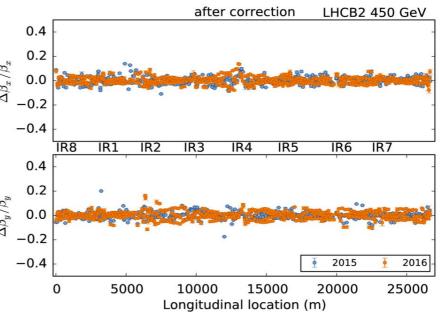
- Significant experience in 2016
 - We measure the optics close to the match points
 - The optics corrections are at the same level as with only squeeze
- For the optics corrections there is no limit on β* during the ramp & squeeze
 - Full Ramp & Squeeze? When?

- The new approach using k-mod as input for corrections resulted in:
 - Smallest β-beat ever achieved in LHC
 - 1% RMS β-beat at the IP1 and IP5 (without crossing angles)
- Coupling corrected to $\approx 2^{*}10^{-4}$ in MD
 - A non expert tool to reach this level is planned

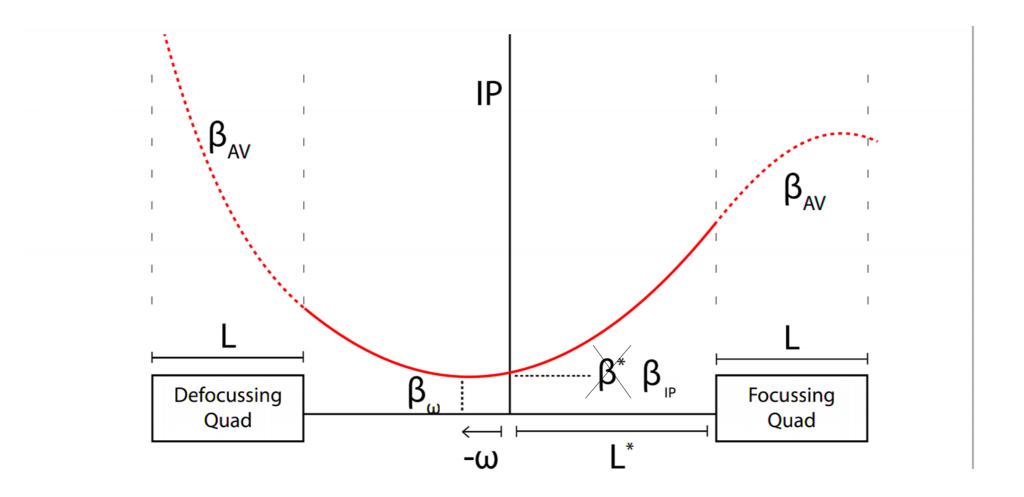
2017 commissioning:

- Suggest non-linear correction procedure to correct the sextupoles errors in the IR (see E. Maclean's talk for details)
 - -> No β -beat from the change of crossing angles
 - Backup solution: Correct with the crossing angles in
- ATS or nominal optics will not impact the quality of the optics corrections in 2017


Backup slides


12/13/2016

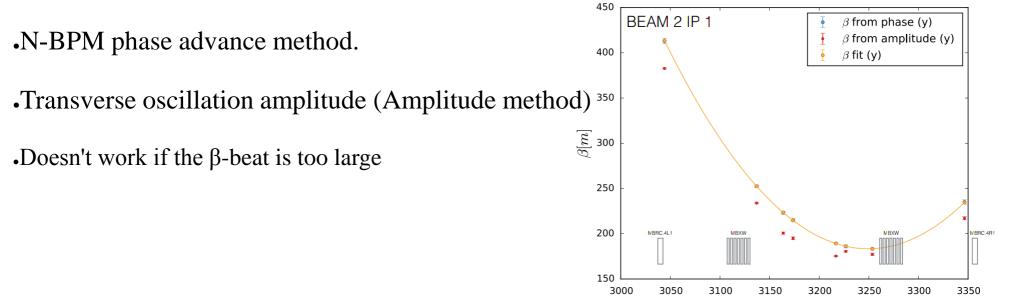
Injection After Correction


Ballistic Optics

- The triplets are turned off
- Motivation:
- To calibrate the BPMs close to the IP
- Later use them to constrain the corrections
- Help us understand where the errors originate

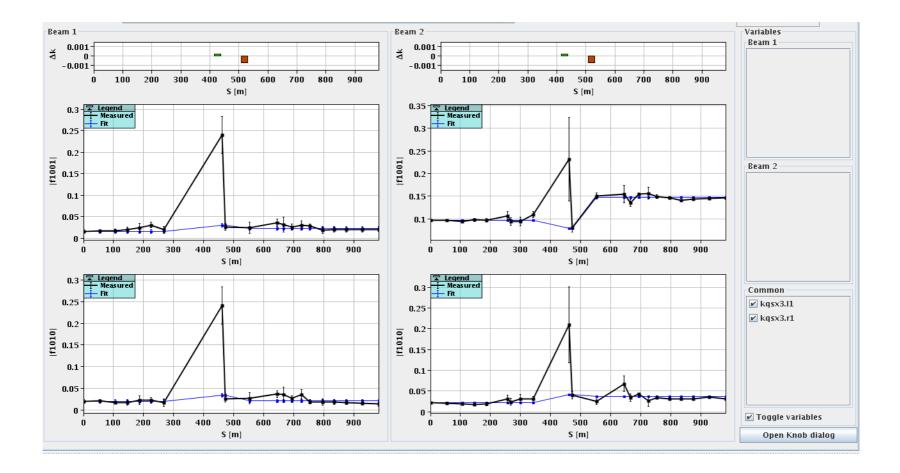
In order to avoid confusion I will use the notation beta at the IP, β_{IP}

12/13/2016



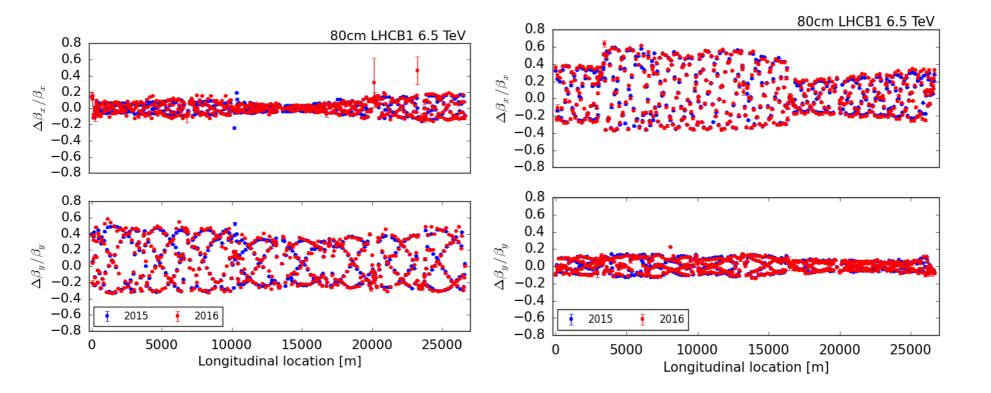
- Needs very precise calibration of the BPMs
- Used the ballistic MD to calibrate the BPMs close to the IP

 β -function is being computed using two different methods:


12/13/2016

position [m]

Local coupling corrections



Based on matching the change in the RDTs (f_{1001})

80cm before Correction

Waist shift

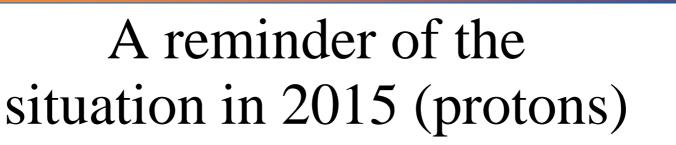
		Proto	n Run		Ion R	un		
		waist [m]	Uncertainty [m]	Expect ed Chang e [m]	shift [m]	uncertaint y [m]	Diff with expected Shift [m]	Unce rtaint y [m]
IP 1	B1H	0.24	0.01	-0.23	0.02	0.04	0.02	0.04
	B1V	0.23	0.01	-0.23	0.05	0.02	0.06	0.02
	B2H	0.17	0.02	-0.22	0.04	0.03	0.09	0.04
	B2V	0.21	0.01	-0.22	-0.04	0.02	-0.03	0.02
IP 5	B1H	0.20	0.01	-0.18	-0.04	0.05	-0.07	0.05
	B1V	0.15	0.01	-0.19	0.01	0.02	0.04	0.02
	B2H	0.22	0.01	-0.18	0.02	0.04	-0.03	0.04
	B2V	0.11	0.01	-0.18	-0.09	0.03	-0.03	0.04
Mean		0.19			-0.005			
12/13/2016								2

		Proton run		Ion run	
		$eta_{ ext{IP}}$ [m]	Uncertainty [m]	eta_{IP} [m]	Uncertainty [m]
IP 1	B1H	0.878	0.013	0.810	0.005
	B1V	0.865	0.007	0.840	0.003
	B2H	0.819	0.013	0.824	0.003
	B2V	0.827	0.006	0.825	0.003
IP 5	B1H	0.862	0.011	0.830	0.007
	B1V	0.864	0.049	0.842	0.005
	B2H	0.867	0.014	0.766	0.002
	B2V	0.827	0.020	0.812	0.006

12/13/2016

Local coupling corrections

		2012	2015	2016
		$[10^{-4} m^{-2}]$	$[10^{-4} m^{-2}]$	$[10^{-4} m^{-2}]$
IR1	kqsx3.r1	8	8	6
	kqsx3.l1	8	8	11
IR2	kqsx3.r2	-9	-16	-14
	kqsx3.l2	-9	-16	-14
IR5	kqsx3.r5	6	7	7
	kqsx3.l5	6	7	7
IR8	kqsx3.r8	-7	-5	-5
	kqsx3.l8	-7	-5	-5



Comparing the global coupling knobs

	Injections	5	3m		
	2016	2015	2016	2015	
LHCBEAM1/CMINUS_IM.IP7	-0.012	-0.014	-0.0082	-0.017	
LHCBEAM1/CMINUS_RE.IP7	-0.0235	-0.0175	-0.0125	-0.0063	
LHCBEAM2/CMINUS_IM.IP7	-0.05359	-0.0529	-0.0081	-0.02799	
LHCBEAM2/CMINUS_RE.IP7	4.999E-4	0.00449	-0.003	-0.00399	
sum in quadrature	0.05901	0.0575	0.0173	0.0335	
12/13/2016				30	

• The β at the IP was larger than design and the waist was shifted (both IP1 and IP5)

		β _{IP} [m]	Waist shift [m]
IP 1	B1H	0.878	0.236
	B1V	0.865	0.227
	B2H	0.819	0.166
	B2V	0.827	0.207
IP 5	B1H	0.862	0.201
	B1V	0.864	0.154
	B2H	0.867	0.221
	B2V	0.827	0.113

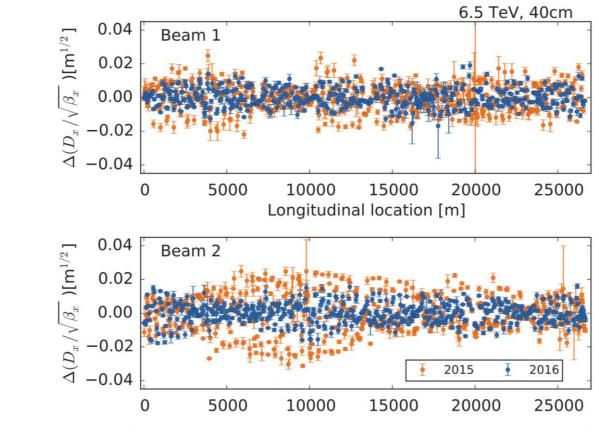
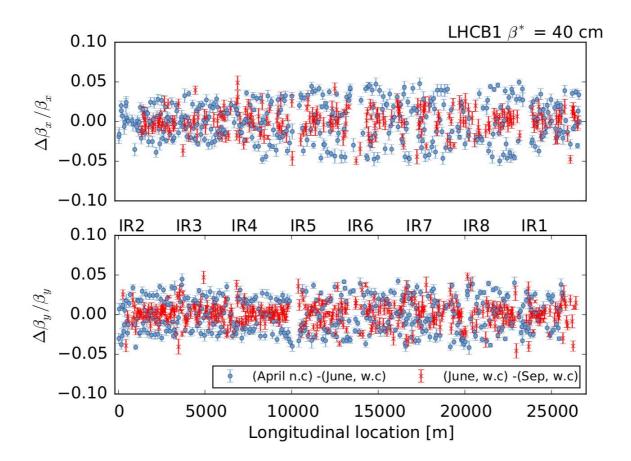


Figure 6: Improvement in dispersion beating at 40 cm β^* .

The local corrections

IP1

IP5


Magnet	2015 (protons) [m ⁻²] 10 ⁻⁵	%	2016 [m ⁻²] 10 ⁻⁵	%	Magnet	2015 (protons) [m ⁻²] 10 ⁻⁵	%	2016 [m ⁻²] 10 ⁻⁵	%
MQXA1. L1/K1			1.23	-0.14	MQXA1. L5/K1	2.00	-0.23	2.00	-0.23
MQXA1. R1/K1			-1.23	-0.14	MQXA1. R5/K1	-2.00	-0.23	-2.00	-0.23
MQXB2. L1/K1	0.35	- 0.0 40	0.65	-0.07	MQXB2. L5/K1	-0.09	-0.01	0.27 (0.2)	0.036 (0.027)
MQXB2. R1/K1	-0.7	0.0 80	-1.00	0.11	MQXB2. R5/K1	1.90	0.22	1.48 (1.60)	0.13 (0.14)
MQXA3. L1/K1			1.22	-0.14	MQXA3. L5/K1			1.50	-0.17
MQXA3. R1/K1			-1.22	-0.14	MQXA3. R5/K1			-1.50	-0.17
	I IP1 and	l IP5 sa	me as in ions	s except MOX	B2.R5 values f	or ion correct	on in pare	entheses ()	

12/13/2016

IPT and IP5 same as in ions except MQXB2.R5 values for ion correction in parentneses ()

