The 7th Evian Workshop: Nonlinear optics commissioning in the LHC

Ewen H. Maclean and the **O**ptics **M**easurement and **C**orrection (**OMC**) Team

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

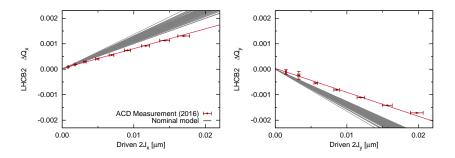
(From talk by Mike Lamont, circa. 2011)

<ロ> (四) (四) (三) (三) (三) (三)

(From talk by Mike Lamont, circa. 2011)

Talk on behalf of the OMC "Owls"

Particular thanks also go to X.Buffat, M. Giovannozzi, S. Fartoukh and R. De Maria


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why nonlinear optics commissioning???

ightarrow impact of NL-error in experimental insertions increases for small β^*

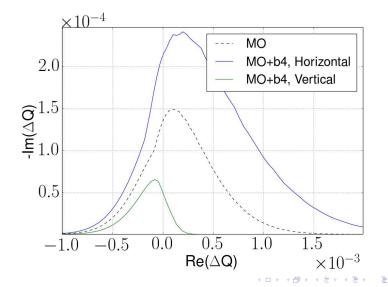
Normal octupole (b₄)

- Normal octupole causes tune spread with particle amplitude
- Landau octupole (MO) intentionally introduce *b*₄ for damping of instabilities

• Measured Q-spread from IR- b_4 at 40cm $\sim \frac{1}{3}$ of that generated by MO (2016)

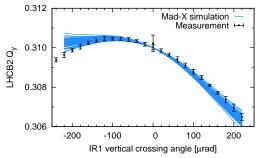
Tune spread generated in experimental insertions is not a small effect!

- Since 2012 observe online BBQ $|C^-|$ cannot be trusted with strong MO
 - \rightarrow low- β optics is in equivalent situation even without MO
 - \rightarrow Online $|C^-|$ should be ignored for $\beta^* < 80 \, \mathrm{cm}$.
- IR tune-spread may enhance or correct detuning introduced by MO
 - \rightarrow potential impact on Landau damping of instabilities


Contribution of experimental insertions depends on β^*

- \rightarrow Tune footprint varies significantly during the squeeze!
- \rightarrow See companion slide.

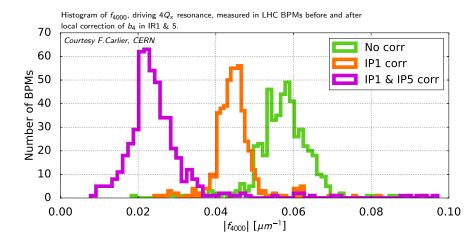
By 33cm tune spread bears little relation to intended footprint



Stability diagram at $\beta^* = 33 \text{ cm}$ with & without IR b₄ errors Simulations and plot by Xavier Buffat (CERN)

Can we correct?

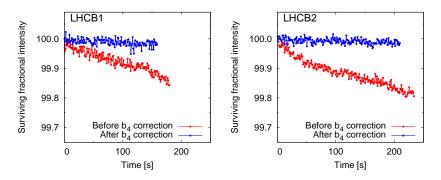
- Dedicated correctors left & right of IP allow local compensation
- Discrepancy of beam-based measurements with magnetic model → can't calculate correction directly from magnetic measurements
- Want local correction per-IP → challenge is separating contribution from IR1 & IR5



- 2nd order feed-down to Q_{x,y} in IR1 agrees with magnetic model
- 2nd order FD did not agree in IR5
 → significantly smaller
- Apply nominal IR1 correction, then minimize residual in IR5

・ロト ・ 一下・ ・ ヨト・

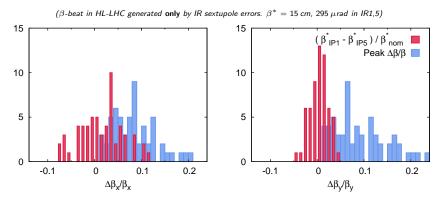
э


- Successful correction of b₄ achieved at 40cm
- Validated by direct measurement of b₄ Resonance Driving Terms (RDT)

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Local corrections are independent of β^*

- IR1 correction at 40 cm validated at 4 TeV, 60 cm in 2012
 Phys. Rev. ST Accel. Beams 18, 121002 (2015), E.H. Maclean, R. Tomás, M. Giovannozzi, T.H.B. Persson.
- Observe improvement in lifetime at $\beta^* = 14 \,\mathrm{cm}$ upon applying IR b_4 correction from $40 \,\mathrm{cm}$


Require $\sim 1/2$ shift for re-validation of b_4 corrections in experimental insertions

IR - sextupole errors

- IR-nonlinear errors in HL-LHC have a significant impact on the beam dynamics
- Feed-down from *a*₃ & *b*₃ with crossing scheme applied causes large perturbations to linear optics

Serious risk correction of IR-sextupole errors will be a machine protection issue in HL-LHC, certainly a concern for lumi-balance

FOR HL-LHC WANT EXPERIENCE COMMISSIONING $b_3 \& a_3$ ERRORS NOW, WHILE THEY ARE LESS CRITICAL

Effect on linear optics scales by $\sim \frac{4}{3}$ going from 40 cm to 30 cm:

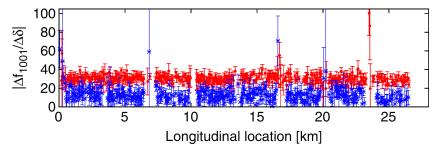
- eta^* imbalance at 40 cm from effective model pprox 1%-1.5%
- $facksymbol{eta}$ eta^* imbalance at 30 cm from effective model pprox 1%-2%
- From measurement expect peak $\frac{\Delta\beta}{\beta} \approx 4\%$ from nonlinear errors

- Aim to correct $\frac{\Delta\beta}{\beta}$ & ATLAS/CMS β^* -imbalance from IR-sextupole feed-down in 2017
- Not large enough to be a machine protection issue
 - \rightarrow Perform nonlinear optics commissioning in parallel with other tasks, after initial commissioning of linear optics with flat orbit

Correction strategy for IR sextupoles:

- Measure feed-down from nonlinear errors to tune and coupling → Requires manual or automatic OFB during orbit scans
- Where beam- & magnetic- measurements agree, implement & validate nominal corrections
- Where beam- & magnetic- measurements disagree, minimize feed-down to Q_{x,y} of both beams with IR-sextupole correctors
- If unable to find a solution fall back to nominal OMC methods → Commissioning with crossing angles is untested at low-β

Nonlinear optics commissioning requires 2 shifts:


- Combined b₄ validation, and measurement of IR sextupole errors
- \blacksquare Implementation of IR sextupole corrections & final β^* measurement with crossing scheme applied

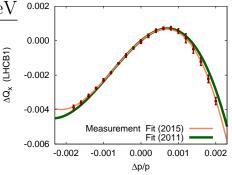
<u>CHROMATIC COUPLING</u> \rightarrow Change of $|C^-|$ with $\frac{\delta p}{p}$

- Skew sextupole + horizontal dispersion
- Normal sextupole + vertical dispersion
- Measured for free when checking normalized dispersion with AC-dipole

Correction demonstrated at $4\,{\rm TeV}$ in 2012

Phys. Rev. ST Accel. Beams 16, 081003 (2013), T.Persson, Y.I.Levinsen, R.Tomás, E.H.Maclean.

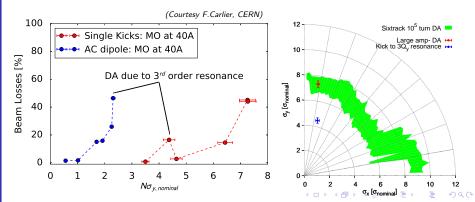

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへで


Correction commissioned in 2015, but not applied in operation

Improved control of coupling with negligible commissioning overhead

Nonlinear optics at 450 ${\rm GeV}^{-c}$

- Beam-based correction of NL-chroma
- Order-of-magnitude b₄ error (Q^{''}_{x,y})
- Factor \sim 2 error in b_5 $(Q_{x,y}^{\prime\prime\prime})$
- Errors stable over 5-year period



- Minimizing NL-chroma corrects tune-spread, decoherence & DA
- Demonstrated in Run I MD Phys. Rev. ST Accel. Beams 17, 081002, E.H.Maclean et.al.
- Used operationally since start of Run II CERN-ACC-NOTE-2016-0013, E.H.Maclean et. al.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Dynamic aperture at injection reduced by 40A MO in 2016

- **2012** ightarrow limited by 3rd order resonance at \sim 9 $\sigma_{
 m nom}$
- 2016 → comparatively small losses on $3Q_y$ → MKA can kick beyond $3Q_y$ with small losses
- Measured DA: $\sim 4 \sigma_{nom}$ (small losses); $\sim 7 \sigma_{nom}$ (large losses)
- **SIXTRACK DA:** \sim 7 $\sigma_{\rm nom}$ in vertical; Min = \sim 5 $\sigma_{\rm nom}$ (10⁵ turns)
- Reduction of DA for driven oscillations validated.

Conclusions

- Nonlinear errors in IRs are not small effects at low-β!
- **b**₄ has major impact on *Q*-spread through squeeze
 - \rightarrow Corrections well validated in 2016
- Correction of IR sextupoles may be major concern for HL-LHC → Need commissioning experience now, while less critical
- Anticipate $1\% 2\% \beta^*$ imbalance from IR-sextupole in LHC

2 shifts required for commissioning of nonlinear optics

