
HOW TO IMPROVE INTERACTIONS WITH THE CONTROL SYSTEM

S. Deghaye, CERN, Geneva, Switzerland

Abstract
The availability of the LHC control system has been

excellent in 2016, with only 0.11% of the machine

unavailability attributed to Controls. Nevertheless, many

other criteria can be maximised in order to improve the

LHC control system and this paper focuses on the user

experience. After having identified the main users, we

detail some of the perceived problems, e.g. long

development cycles, and areas where improvements can be

made such as the standardisation of interfaces and

integrated tooling. Finally, we propose organisational and

technical solutions that we aim to apply in the near future

in order to try to optimise the user experience.

INTRODUCTION

Several criteria can be used to evaluate the control

system and the system availability is without question the

highest-ranking criterion. Indeed, no matter how good your

control system is in terms of, for example, features and

performance, if it is not available to control your

accelerator, its value is close to zero. 2016 has been a very

good year for the accelerator control. According the

Accelerator Fault Tracking (AFT), a mere 0.11% of the

beam unavailability was attributed to the accelerator

controls. Figure 2 is an extract of the system unavailability

chart for the year 2016.

Other important criteria can be used when assessing the

control system. For example, one could look at the

financial aspects such as the hardware cost, taking into

account both the cost of a new installation but also the cost

generated by the periodic renovation one has to perform.

One could also consider the software cost with license fees

that one has to pay every year to use the commercial

software used in the controls system. Looking beyond

CERN, one could consider the exportability of the system

to be an important aspect. Figure 1 depicts the author’s

subjective evaluation of the current accelerator control’s

infrastructure. This article focuses on yet another aspect:

the user experience. Due to time and space constraints, we

do not study specific applications, which are built using the

infrastructure but instead look at the general user

experience of the control system infrastructure as a whole.

USER EXPERIENCE

According to Wikipedia, the user experience (UX) refers

to a person’s emotions and attitudes using a particular

product, system or service [1]. Other definitions highlight

the human-product interaction, the quality of this

interaction. In our context, it is worth noting that the

interaction is not limited to human-computer. Even though

usability is often seen as the most important aspect of UX,

there are many more such as flexibility. Flexibility is

understood to be how easy and quickly the system can be

used and extended to accommodate new needs, with “new”

being the keyword. Examples of new needs could be new

ways to post-process data or new features to enhance the

infrastructure or solve a common problem. For our work

on the control system infrastructure, we look mainly at the

usability and the flexibility. We concentrate on how the

control system empowers users or impedes them in their

daily job. Improving the user experience is a way to

improve the control system, nevertheless, it must be done

without degrading the other criteria, mainly the

availability, from today’s high-level.

Figure 1: Subjective evaluation of the accelerator controls

Before going further, we need to define who are the

control system’s users. Accelerator operators and

accelerator physicists (AKA MD users) are clear end-users

of the controls solutions. But, as we talk about the

infrastructure itself, we have also a lot of developers

working at different levels of the infrastructure

implementing specific controls solutions. The high-level

application developers implement GUIs and scripts for

interfacing with high-level services such as the logging,

LSA, the post-mortem system, etc. Low-level software

developers mainly work on FESA classes and kernel

drivers with little to no interaction with the high-level

services; at least until the operational deployment. Finally,

the hardware developers design electronic boards with

FPGA and implement their logic using HDL (High-level

Description Language). Whenever the infrastructure or a

specific solution does not work, operators call the support

team for diagnostics and intervention (1st-line Diagnostics

and controls experts). The examples above are by no means

exhaustive and there are more user categories. When

looking at the interactions between the control system and

the users, it becomes clear that we should not define the

users as community of human beings but rather take into

account that a user has multiple roles that he/she will take

depending on the task in hand. A person can be on shift for

0

2

4

6

8

10
Availability

Cost

MaintainabilityExportability

User
Experience

the LHC, but alternating their roles and tasks between

those of an LHC operator and those of a 1st-line diagnostic

expert. The next day, the same person might be the

machine expert post-processing data acquired during the

shift. So, there are different interactions with the control

system and different needs depending on the role.

PERCEIVED UX LIMITATIONS

By interviewing key user representatives, one can

identify two common problems with the control system

infrastructure. The first problem is its complexity and how

it is exposed, and therefore the steep learning curve

encountered when starting to work with it. The second

problem is its lack of flexibility; which is both technical

and organisational. In other words, the control system

infrastructure is perceived by the users as heavy and

complex. In addition, the inadequacy of some tools for

common tasks is often mentioned. Tools have to be taken

in a general sense as this comment applies to GUI tools

such as, for example, the APEX CCS editors but also the

development languages available.

The current situation is not surprising. Indeed, the recent

years were focused on availability and maintainability of

the infrastructure with renovation and consolidation

projects such as ACCOR & InCA. Therefore, even if there

are still about 900 FECs to be renovated before end of LS2,

we have a system that is appropriate for long-lasting, stable

operation phases. In addition, the release and deployment

phases are also well-organised and the post-technical-stop

recovery time is shorter than a few year ago. Furthermore,

as the first years of LHC operation were very important,

the focus was more on the accelerator operator role than on

the other roles such as the software developer. The

consequences of those choices are that the control system

is less well-adapted for a quick-and-dirty test, fast-iteration

development, or simply final validation using the whole

infrastructure.

Figure 2: Statistics of the LHC faults in 2016. Extracted on the XX-XX-2016 from AFT

The root causes of the problems mentioned above are

well known. The control system’s complexity is too

exposed to the users. It lacks homogenous interfaces and

the integration of the different layers could be improved.

The tools, end-user applications, and programming

languages are inadequate for specific tasks typically

performed by some expert roles.

Today’s control system infrastructure can be seen as a

set of independent components. At runtime, those

components collaborate to achieve the expected behaviour

but from a developer or accelerator expert’s point of view,

the whole internal structure is exposed and a (very) good

knowledge of the different components and layers is

required. Furthermore, the integration could be improved

as today’s level of integration has two main consequences.

Firstly, simple tasks can require many actions and there are

no straightforward, easy-to-remember connections

between them. The workflows are sets of steps without

clear relationships and are based on tools as different as

web applications and shell scripts can be. Secondly, the

lack of integration leads to disparate and sometimes

incompatible feature sets between the control layers. For

example, some extensions were implemented at the front-

end layer for specific use-cases but these extensions are

incompatible with the high-level concepts. For a seasoned

developer, this will not be a problem but a junior

programmer can potentially lose a lot of time when he

realises that incompatible features are used and his design

needs to be reworked.

With respect to the interfaces’ homogeneity, there is no

common API to access all of the high-level services, even

for the basic use cases. To give an example, one cannot

subscribe to a power converter in the SPS for all the SFT

cycles since yesterday with a single consistent API.

Instead, it is necessary to fetch the past data from the

logging service and then subscribe to the actual device for

live data using another API.

All the points mentioned above are neither critical nor

blocking but as the system’s operational maturity is

reached, improvements in those areas have started or are in

the pipeline. In the next sections, we will go through

different ways of improving the usability and the flexibility

of our system. Some are still at the level of suggestions but

they will clearly shape the evolution of the control system

over the coming years. Other proposals are already being

taken into account as part of recent developments.

IMPROVING USABILITY

In order to improve the usability of the controls tools and

of the system in general, more emphasis has to be put the

on the control system’s use-cases rather than focusing on a

specific service’s needs. For a developer, that means a

better full-vertical integration with compatible features

that make sense throughout the layers of the control

system. Another example are the configuration tools. They

should not be a set of heterogeneous service-specific tools

but instead a single tool, or at least tools with a single-entry

point, which guides the user through the process required

to assemble all necessary information. Furthermore, if

different tools are required to perform a task, these tools

should be linked so that the end-user does not need to

remember the list of tools to be used.

This is the approach taken in the new Controls

Configuration Data Editor (CCDE). Figure 3 depicts a

mock-up of the new hardware configuration editor, which

is part of the CCDE. The top panel of the interface

assembles information from different sources so that the

end user does not need to gather data from different tools,

web pages, etc.

Whenever a new service is put in place, it will be

integrated into the existing tool rather than providing a new

service-specific tool. This better integration immediately

helps to reduce the so-called configuration marathon. It is

important to note that this approach does not mean that the

resulting tool is a bulky application difficult to maintain.

Indeed, the modern web-based applications, distinct tools

can be seamlessly integrated.

Figure 3: Mock-up of the new Controls Configuration Data Editor (CCDE)

In addition, we want to apply a principle known as

“convention over configuration” to the control system’s

configuration. Today, every single bit of the control system

can be configured and most of it with opt-in behaviour (i.e.

you need to indicate that you want to use a given service).

In recent years, more general attributes, such as the control

device state, have been introduced. Thanks to this simple

piece of information, more conventions will be put in place

and more default behaviours can be inferred from it. For

example, it is planned to rely on the device’s state attribute

to decide by default whether the alarms should be

monitored, which settings to be managed, etc.

Returning to the interfaces’ homogeneity, we have to

emphasis the difference between the needs of the end-users

and the need for a proper maintainability; which can be

seen as opposing forces. The fact that the control system is

a set of islands is actually a benefit from the maintenance

point-of-view. Every complex system should be easily

decomposed into simpler modules in order to manage the

complexity. That being said, what is clearly missing in the

current system is a common interface to access the

different services (islands) as, from a user perspective, the

source of data (FESA, InCA acquisitions, LSA historical

settings, CALS, Post-Mortem, etc.) should not matter. The

control system is built around a data model that commonly

referred to as the device/property model. In a few words,

the device-property model says that the independent

entities are devices and the devices have properties that can

be read and written. Obviously, this model is not going to

cover the most exotic cases but this is the direction we want

to take for the future, especially whenever we have

opportunities to renovate services such as the CERN

Accelerator Logging System (CALS). We will know that

we have reached our goal when it will be possible to

seamlessly retrieve logged data from two days ago and live

data from the accelerator with the same API.

To finish the discussion on usability improvement, we

need to look at it from a developer’s perspective and how

easy it is for them to quickly iterate in their development

cycle, as well as validate their development without

impacting the operational accelerators. The main issue is

that the system has been solidified for many years to ensure

excellent operational reliability but shortcuts required for

agile development are not in place yet. Furthermore, and

rightly so, developers are encouraged to work on the

General Purpose Network (GPN) where not all of the

services are available. In recent years, more and more

effort has been invested in the setup and use of testbeds. In

BE-CO, most of the low-level frameworks and libraries are

extensively tested on the so-called Controls TestBed

(CTB). With an even bigger ambition, TE-MPE is putting

in place a complete hardware and software test bench as

described in [2]. There is also an ongoing effort to provide

high-level services on the non-operational GPN network so

that validation can be done without having to pass through

formal steps such as code release and deployment. Finally,

the topic of simulation has recently received more attention

and many usability issues could be solved by providing

out-of-the-box simulation modes whereby one could limit

its dependencies on external systems. For example, a

simulation mode for the timing system would simplify the

testing with different beam sequences without depending

on the actual accelerator schedule.

IMPROVING FLEXIBILITY

Several initiatives have been launched in the recent

months to improve the flexibility of some of the controls

components. Furthermore, we would like to experiment

with different organisation of the work that, among other

things improve the organisational flexibility. One of the

areas that needs improvement is the rapid application

development, i.e. solutions that provide an easy-to-use

language for the situation where a quick test or validation

must be done and where a full development is not practical.

The Python language has been seen by many as a valid

solution for cases such as Machine Development (MD)

slots and also for low-level hardware validation. Inspector,

a tool to quickly design GUIs, is another successful

example on how to add flexibility in the controls offering.

In both cases, we want to work differently and build

stronger collaborations. In the past, one of the central

controls groups would have taken over the support of the

technology or the tool. Indeed, we believe that the end-

result can be much better if all CERN users could, if they

wanted and had time to, contribute to the tools. Of course,

any attempt to modify the way we work and collaborate

cannot be done without ensuring that the current levels of

availability are kept and bearing in mind our long-term

needs in terms of maintainability. This change of

organisation means that we depart from the usual

client/provider approach. This approach does not scale

very well and introduces delays between new needs and the

availability of the solution, in other words, organisational

inflexibility. This problem has been solved for a long time

by open-source communities for software as big as Linux.

Nevertheless, one must keep in mind that we have specific

constraints in terms of long-term stability and therefore

responsibilities must remain clear. Figure 4 depicts the

workflow of two Tango products Taurus and Sardana. This

workflow relies on modern software engineering tools and

concepts such as Git, pull requests (PR), and code reviews.

We believe that such an approach should be attempted for

the support of the Python technology. Instead of expecting

a central entity to develop and support everything related

to that technology, we build a community around a focus

group where people can share their experience, problems

and solutions but also decide collectively on the creation

of new components or libraries and the evolution of

existing ones. The support is then given by the main

authors but the community acts as back-up should the

experts be unavailable (holidays, sick leave, etc.). To

ensure that the required discussions take place and that the

community is kept alive, a central controls group such as

BE-CO should organise the focus group. If the approach is

successful, the same should be applied to other core

frameworks such as FESA. One could very well imagine

that new features are introduced by a framework user after

discussion and validation by the core team. Later, the

developer submits (aka make a pull request in Git terms)

to the team that performs a code review and verifies that

the long-term requirements (code quality, tests, etc.) are

satisfied. As the last step, the new feature is available in

the latest release and the whole community can profit from

it. Compare to an approach where all the requests are sent

to a single team, prioritised and worked on by them, it is

evident that a more collaborative approach brings

flexibility in our organisation.

Figure 4: Taurus & Sardana community development (Courtesy C. Pascual-Izarra et al.)

ACKNOWLEDGMENT

The author would like to acknowledge all colleagues who

contributed their inputs, examples and reflections.

REFERENCES

[1] User Experience definition, Wikipedia,

 https://en.wikipedia.org/wiki/User_experience

[2] M. Zerlauth, Project Roadmap for MPE Testbed in

b272, EDMS Document no 1740427.

https://en.wikipedia.org/wiki/User_experience

	How to improve interactions with the control system
	INTRODUCTION
	User experience
	Perceived UX limitaTIONs
	Improving usability
	IMPROVING FLEXIBILITY
	acknowledgment
	References

