
Testing and Deployment Strategies - Their Impact on Accelerator Performance

J-C. Garnier, CERN, Geneva, Switzerland

Abstract

The Accelerator Control system is developed by the
Controls Group in collaboration with numerous software
developers from equipment groups to provide equipment
experts and operation crews with general and specific con-
trol and supervision software. This presentation proposes
a review of the different strategies applied for testing, val-
idation and deployment of the software products. The risk
and impact of these strategies on the LHC [1] performance
and availability will be studied, and possible evolution to
continuously improve this performance will be discussed.

INTRODUCTION

This paper intend to present a review of common soft-
ware engineering activities which are testing and deploy-
ments, and how it impacted the performance of the LHC in
2016.

Software testing is a way to prove that the software is
performing in the way it is required by the stakeholders. It
is also a way to inform both stakeholders and other devel-
opers of the behavior and the quality of the software.

Software deployment is the process of ultimately using
the software in a production environment. This process can
consist of few or many steps, depending on the choices of
the software engineers and users of the software.

As any software engineering activity, numerous ways
to perform them have been advertised, demonstrated, ac-
cepted or denied by the software engineering community.

This paper focuses on Java, C++ and Python technolo-
gies and on high level software, ranging from Front-End
Controller software (e.g. FESA [2]) to User Interfaces,
Services and Analysis Tools. This papers references mul-
tiple times to controls software or controls environment,
which means the software and infrastructure produced by
the Controls Group and the Equipment Groups together.

This study was done following a top-down approach,
where the ultimate upper goal is the performance of the Ac-
celerators. From the estimated impact on the performance,
one could identify issues in the deployment strategies and
the testing strategies.

The first section describes the investigation performed
to review the impact of control software on LHC perfor-
mance. The second section describes the testing strategies
applied during development, release and deployment of the
control software. The third section describes the deploy-
ment strategies that are used for software in the control
system. The fourth and last section gives an outlook of
possible directions for the future.

REVIEW OF TEST AND DEPLOYMENT
IMPACT ON LHC PERFORMANCE

Tracking Tools
The accelerator control system relies on a multitude of

tools to track events, faults and actions: logbook, AFT [3],
central tracing service, etc. Coordination initiatives com-
plete this list: Exploitation Meetings and Smooth Upgrade
Working Group (SUWG).

The most visible and exploitable tool is the logbook
where every step of the accelerator operations are recorded.
Entries can be added manually by operators or experts,
or automatically by software tools such as the LHC Se-
quencer. The logbook will typically record every software
deployment that was announced to the operators. The fact
that these recordings are written by hand, and only when
announced, proves the analysis to be difficult as some de-
ployments are indeed not referenced, and the referenced
deployments are reported in very different ways. Nonethe-
less, if a quantitative evaluation was impossible for 2016,a
qualitative evaluation has been performed and one can see
that deployments have had a negative impact on the perfor-
mance of the LHC, and multiple hours of operations were
compromised after software deployments. There were dif-
ferent causes:

• lack of tests and validation before the deployment to
operation

• validation could only be performed with beams

• impact on dependent systems was underestimated

This last point is very significant, as it is frequently men-
tioned, not only during deployment and integration in op-
eration, but also during the development phases when the
contribution of other software teams is often underesti-
mated.

Correlating data from the logbook with other tools
proved to be difficult and extremely time consuming. A
deployment tracking system is clearly required in order to
supervise this activity and allow the collection of perfor-
mance metrics. It could help identifying all deployments:
major deployments, bug fixes and rollbacks.

Coordination of deployments
Another source of useful information was the Smooth

Upgrade Working Group. It reviews and coordinates the
deployment of software product for each technical stop.
It evaluates the risk for operation, how the software can
be validated, and if it can be rolled back. In addition it
tries to identify the outgoing and incoming dependencies



of the software. In spite of all the dedication and expertise
of its members, it is difficult if not impossible to oversee
all dependencies and prevent all issues, and it keeps track
of them as they raise. The amount of upgrades that are
reported to the SUWG is very important. This brings diffi-
culties in identifying the risk of all of them while it relies
on manual analysis. The SUWG could take advantage of
some software support, like a dependency tracking system
that would report that a software A is used by software B
and C, and that an upgrade of Software A needs to be re-
viewed with software B and C developers.

From this investigation, one can see that some software
is required to better support the deployment of software
product in the LHC environment. Software could:

• help planning the deployments, by providing an accu-
rate and exhaustive understanding of the controls en-
vironment and the dependencies on the deployed soft-
ware.

• collect metrics about deployments, improving the
identification of shortcomings induced by this activ-
ity.

REVIEW OF TESTING STRATEGIES
Testing is a wide term and numerous type of software

testing can be identified. The following ones are considered
in this paper:

• Unit tests that focus on an isolated unit of code, typi-
cally a function or a class.

• Integration tests that validate the interactions of mul-
tiple components together.

• User Acceptance Tests to confirm that the user speci-
fications are fulfilled.

• Testing on a Staging environment, which is ideally as
close as possible to the production environment.

• Final Validation in production, the time devoted to this
last validation is reduced if other testing strategies are
applied.

If writing tests has an initial costs, it also brings numer-
ous advantages to the product, hence a valuable return on
investment, particularly on long term projects like in the
controls environment. They can be seen as documentation
for a function, a class or a feature. They ease the long term
maintenance of the software applications as they help en-
gineers new to the project understand the source code and
prove that it behaves as expected, and make them confident
in refactoring - e.g. modifying the existing code - when
fixing bugs or adding new features. The automation and
repeatability of the tests also helps understanding the im-
pact of any modification in the source code or in a third
party dependency on the application behavior.

Unit testing and integration testing are two kind of tests
that must be considered at design time. All software is not

unit testable, but all software can be written in a testable
way. The ability to test the source code of an application
also highly depends on the third party software components
on which the application relies. In the controls environ-
ment, different strategies have been applied through time,
and depending on the interests of the providers of these
third party tools. It results in a discrepancy of the ability
to test controls software. For instance the FESA framework
makes it complicated to write unit or integration tests as itis
very difficult to isolate the logic under test from the FESA
framework. This is a common issue with frameworks that
force the user code to be coupled with them. On the other
hand, when using a library like CMW, JAPC, Post Mortem,
it is rather simple to add an abstraction between the source
code of the application and the third party library, which
in turn makes the application source code testable without
depending on the third party library.

In a machine like the LHC, where the objectives are am-
bitious and the machine protection risks significant, it is
important to consider that core components used by many
applications should not impair the testability of these appli-
cations.

Software testing is supported by metrics that helps un-
derstanding the presence and quality of the tests. Two very
important metrics are the coverage of lines of code and
of branches. A line of code is covered if it is executed
once by a test. Branch coverage highlights the fact that all
conditions of a branch (e.g. if statement) are tested. The
controls environment registers 654 Java projects. 365 of
these projects have less than 50% of line of code coverage.
This means that more than half of the software that runs
the controls environment is not tested. These metrics only
concerns Java because it was simple to integrate the entire
controls software stack thanks to an homogeneous develop-
ment strategy. C++ and Python remain not monitored at the
moment, except on the initiative of the developers. These
metrics are exposed publicly at CERN via SonarQube [4].
Exposing these metrics to users of the product could en-
courage the developers to provide high quality software and
improve the user confidence in the product.

While unit and integration testing are very good tools
to validate the way the source code behaves, user accep-
tance tests are of tremendous significance to highlight that
the software is acting the way it should. Combined with
automation, they guarantee that a feature stays available
for the lifetime of the software product. These tests usu-
ally need to run in a staging environment in order to be
effective. They however often must rely on third party sys-
tems that are not available in the staging environment, for
instance beams. It is usually possible to compensate this
with simulated or mock components. A successful design
of user acceptance tests in a staging environment is for in-
stance the Orbit Feedback system, which relies on auto-
mated tests performed without beams. This testing strategy
helped in understanding the legacy software system, and
reduced the testing time in operation with beams, that re-
quires both operators and experts to be there to validate



the software. Many initiatives exist to provide test environ-
ments, for CMW, Timing and FESA, or for FGCs. Machine
Protection is currently implementing a project of a test bed
for magnet protection and interlock equipment.

At the moment, controls and equipment groups usually
all have their own staging environment, which is usually
limited to their area of concern and rarely provides pos-
sibilities of integration with systems from other equipment
groups. Based on the experience gathered during numerous
hardware commissioning, and foreseeing the work neces-
sary to further automatize the machine commissioning and
beam checkout, the MPE group is currently working on a
staging environment that will enable performing integra-
tion testing on entire powering systems, comprising FGCs,
QPS, interlocks systems and controls software.

The controls environment currently brings some limi-
tations to the proper implementation of staging environ-
ments: there are too many dependencies on the Technical
Network infrastructure, where the operational systems are
also running. A proper staging environment would require
a correct separation between itself and the operational en-
vironment. Numerous attempts had been performed in this
direction but they were always unsuccessful. The Controls
Group under the CO3 impulse is currently reviewing their
numerous project and will come back with recommenda-
tions on providing core services to staging environment out
of the Technical Network.

The more time is spent on unit testing, integration test-
ing, user acceptance testing and staging, the less time is re-
quired for validation in the production environment. There
is of course a lack of metrics illustrating this in our environ-
ment. Such metric could be provided by a deployment ser-
vice, that would help comparing the time required to vali-
date software in operation with the software code coverage.

REVIEW OF DEPLOYMENT
STRATEGIES

The fact of deploying an application consist of following
a process. Two types of applications must be considered
here: Graphical User Interfaces (GUIs) and services. Both
do not follow the same deployment strategies. Services can
then be split into two categories: FECs with e.g. FESA, and
Java services.

GUIs

In the controls environment, deploying a GUI consists of
one step: a release. A release will deliver the GUI product
to a shared file system with its version number. The de-
livered product is a JNLP (Java Network Launch Protocol)
that can be started anywhere provided that a Java Runtime
Environment is available.

A PRO release will update a symbolic link that is usually
referred by numerous users, as it is the link to the latest
production ready GUI. When a PRO release is performed,
the previous PRO release is aliased with the PREVIOUS
alias. This simple mechanism ensures that either users can

rollback to the previous valid version of the application by
modifying the link they use, either developers can modify
the PRO link to the previous stable version.

The particularity of the deployment area is that it is mu-
table, and modifications of the deployed production GUIs
are sometimes performed in particular situations where a
core service or library needs all its clients to be updated.
The danger in this operation is that production GUIs are
not tested after this modification and it could lead to unex-
pected behaviors.

Some alternative processes are implemented by other
equipment groups. For instance, BI is relying on a single
and common classpath for all their applications. It guar-
antees the compatibility of their application between each
others, while all applications are modified if new releases
of core components are performed. In this environment,
a strong validation step is required to ensure validity of
the applications. Another example of alternative process is
used in MPE, where the GUI deployment process is com-
posed of three steps: a release, an automated validation,
and an immutable deployment. This process guarantees
that the application is validated by automated user accep-
tance tests before it can be used in operation, and that the
application used in operation will never be modified. Any
modification even a simple modification of dependencies
must go through the automated validation step.

Services
Java servers deployments in the controls environment

consists of two steps: a release, and a deployment on the
server that hosts the service. In order to deploy, the de-
velopers authenticate to the operational server and elevate
their privileges to run some deployment commands and
start-up commands. With their elevated privileges, the de-
velopers can unintentionally perform actions that might im-
pact other services, there is no protection against that at the
moment. After deployment, previous versions of the ser-
vice are kept to be used for roll back.

Rolling back a service doesn’t rely on commands, but
on file system and symbolic link manipulations. There is
currently no consistent solution offered for multi-layer ap-
plications that consist of server, database and GUI. It can
be a challenge to rollback all these at once.

Here MPE and BE-CO-DS are using Continuous Inte-
gration and Continuous Delivery in order to support fast
delivery of features to their services. These implementa-
tions rely on scripts that automate the deployment based on
the authentication and privilege elevation aforementioned.
It removes the risks that a human does not interact anymore
directly with remote machine, but the underlying mecha-
nism is still the same and can still be error prone.

In addition, a link must exist between the General Pur-
pose Network and the Technical Network in order for de-
velopers to deploy their services. A clean deployment strat-
egy could provide capabilities to developers to release and
deploy their applications without having to act on them-
selves on the operational infrastructure. This would help



reducing the risks of human errors.
Deploying a FESA class is yet another but very similar pro-
cedure. The difference mainly consists in the fact that the
API of the FESA class is exposed in a database.
In the current environment, there is no restrictions on
the deployment of operational software, whether GUIs or
servers. A deployment can be performed at anytime with-
out any constraints coming from the beam presence or op-
eration planning. Indeed responsible people are aware of
these constraints and coordinate as best as possible with
their interested colleagues for a deployment. The risk of
deploying anytime and the entanglement between develop-
ment environment and operational environment could be
avoided with an integrated deployment tool.

Deployment Service
This paper identified the following possible areas of im-

provements in the testing and deployment of software pack-
ages:

• Testing out of the production environment in order to
minimize the validation time in production

• Simple and safe deployments and rollbacks that can be
performed by Operation Crews when they judge that
there is a time window to do so

• Tracking of the time spent to validate a software prod-
uct in production, until it is accepted or rejected

• Proper separation of the development environment
from the operational environment

• Tracking of dependencies between services and API
versions

Such a deployment service is an investment that would
make the software deployment step safer and more trans-
parent. It cannot be built and provided at once, but should
rather grow step by step. A first milestone would simply
be the tracking of the deployed versions and the incoming
versions that operators could deploy and validate. A valu-
able extension that could come afterward is the tracking of
the dependencies between the software services, and their
versions.

Numerous open source tools can support parts of such a
deployment service.

OUTLOOK
This paper has explained that it could not rely on any

quantitative metrics of the impact of testing and deploy-
ment strategies of control software on the accelerator per-
formance. This illustrates however a scarcity in the controls
environment that can be fulfilled. This paper has illustrated
that most of the Java software stack remains uncovered by
unit and integration tests, and that such metrics are missing
for other programming languages. It shows however that
controls and equipment groups are equipped with testbeds

that allow them to validate their software in a closed stag-
ing environment. Larger testbeds can be implemented to
validate the integration of software services together. This
paper illustrates that the ways deployment are performed
are not optimal and comport some risks, and that a techni-
cal solution to improve this could actually provide valuable
metrics in order to better understand the performance of
software deployments.

ACKNOWLEDGMENT
I would like to express my gratitude to Kajetan Fuchs-

berger and Grzegorz Kruk for allowing me to work on this
vast, motivating and challenging topic.

REFERENCES
[1] LHC Study Group et al., “The Large Hadron Collider,

Conceptual Design”, CERN, Geneva, Switzerland, Rep.
CERN/AC/95-05, Oct. 2012.

[2] M. Arruat et al., “Front-End Software Architecture”,
ICALEPCS07, Knoxville, Tennessee, USA, 2017.

[3] A. Apollonio et al., “LHC Accelerator Fault Tracker - First
Experience”, IPAC2016, Busan, Korea, May 2016.

[4] http://sonar.cern.ch


