

Operational Limits from Intercepting Devices

C. Bracco, W. Bartmann, M. Calviani, M.I. Frankl, M.A. Fraser, S. Gilardoni, B. Goddard, V. Kain,

A. Lechner, A. Perillo Marcone, M. Meddahi, Francois-Xavier Nuiry, F.M. Velotti

- ▶ 2017 intensity limits from intercepting devices
 SPS→ LHC injection → LHC extraction
 (robustness and transmission):
 - SPS dumps, beam stoppers, collimators and protection elements
 - TL collimators
 - LHC injection protection
 - LHC extraction protection
- Conclusions

Maximum Intensity from SPS

Achievable beams

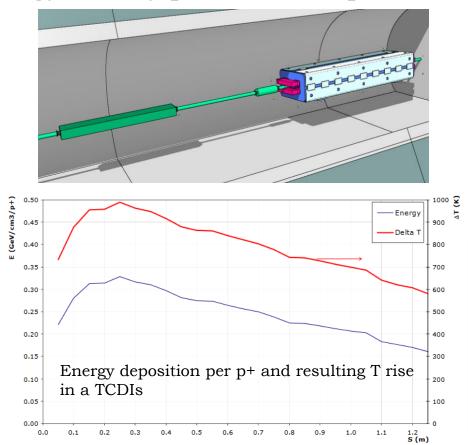
	ppb	Norm. Emittance [mm mrad]	# bunhces
25 ns	1.3e11	2.7-2.8	288
BCMS	1.3e11	1.4	288
80 bunches	1.2e11	2.8	240 (320*)

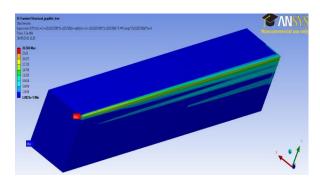
High pressure recorded at the TIDVG#3 on April 25th 2016
→ leak identified inside the TIDVG shielding → limit SPS intensity to:

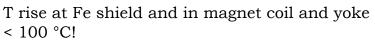
- 96 LHC-type bunches
- 2.2e13 ppp for FT (4-6e11 residual protons dumped per cycle.)
- No high intensity MDs or HiRadMat

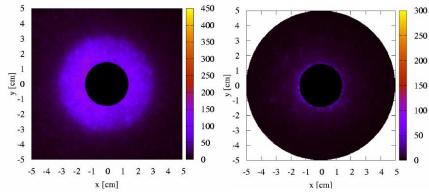
* 10% higher brightness than ultimate LHC \rightarrow Ok (t.b.c). MKI Flattop to be adapted accordingly (if possible!!)

Possible 2017 Scenarios


	Advantages	Disadvantages
Scenario 1 (new TIDVG#4 installed)	 Designed to relief operational constraints of TIDVG#3 (risk of melting Al) Allow LHC plus full fixed-target physics, MDs & HiRadMat 	 New dump concept Large number of screws Outgassing/conditioning time also with beam (probably comparable to TIDVG#3)
Scenario 2 (present TIDVG#3 kept)	No delays	 Current operational limitations remain valid Higher risk of catastrophic failure during 2017 (2 weeks stop plus NOT ALARA) Conditioning with beam of new one during physics in case of failure
Scenario 3 (refurbished TIDVG#2 reinstalled)	No delays	 Unknown operational limitations also compared to 2016 Possible aperture limitations of SPS
Scenario 4 (TIDVG#4 delayed but baseline)	Same as of Scenario 1	Impact of cold check out if readiness >March 24 th


M. Calviani, LMC 02/11/2016


If Scenario 1 OK, any other limitation from intercepting devices?


Needed Assessments and Studies

- Attenuation to guarantee the protection of the downstream components (tanks, masks and magnets)
- **Robustness** of the **protection elements themselves**
- **FLUKA** and **ANSYS** calculations to define the **longitudinal** and **transverse** energy density profile **>** Temperature **>** stresses and strains distribution

Damage Limit and Attenuation Factor

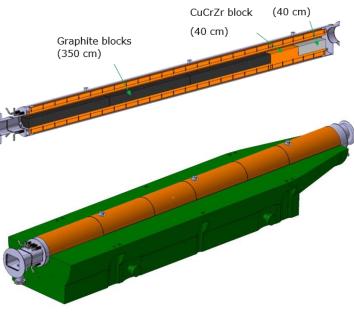
Present assumptions based on simulations and "TT40 material damage test" performed in 2004

Intensity	# protons	Comment
А	1.2e12	No effect
В	2.4e12	Decolouration
С	4.8e12	Melting
D	7.2e12	Fragment ejections

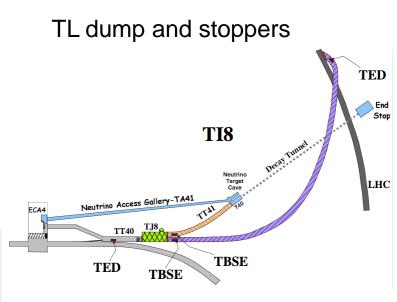
Setup beam flag at 450 GeV: $5x10^{11}p+(~1/4 \text{ damage limit})$

Attenuation factor A:

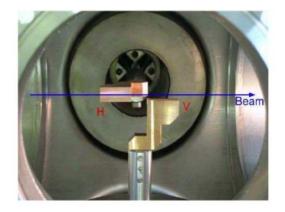
$$\frac{I_{after}}{\varepsilon_{after}} = \frac{1}{A} \cdot \frac{I_{beam}}{\varepsilon_{beam}}$$


LHC TL collimation system designed to **attenuate impacting intensity to 2x10¹² p+:**

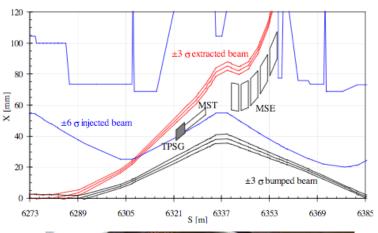
A =20 for ultimate LHC beams (1.7x10¹¹ppb, 288 bunches and 3.5 mm mrad normalized emittance)


SPS internal dumps

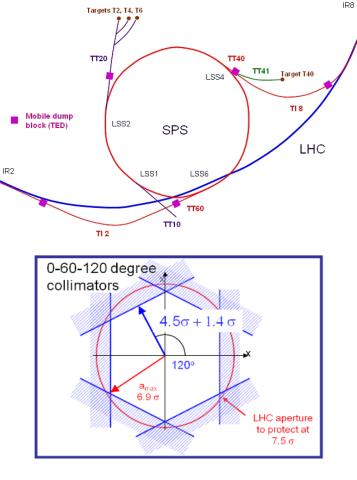
Device	Comment	Material
TIDVG#4	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, CuCrZr and W
TIDH	Sweep. Dump at 28 GeV	AI
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TEDIHO	450 GeV/ Continuous dumping	Sandwich:
	problematic. Graphite not in vacuum	Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should never be impacted by the beam but should still survive one shot	
Scraper		Graphite
TIDP	Momentum collimator. n/a	
TPSG	450 GeV: Assume all beam in one spot	Sandwich: graphite <-> CfC, Ti, Inconel
TCDIs	450 GeV. Graphite	
TDI	450 GeV	Sandwich: Graphite and CuCrZr


Device	Comment	Material
TIDVG#4	Sweep, intensity limitation not brightness. Continuous dumping problematicSandwich: Graphite, CuCrZr and W	
TIDH	Sweep. Dump at 28 GeV	AI
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TEDLHC	450 CoV. Continuous dumping	Sandwich:
	problematic. Graphite not in vacuum	Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should never be impacted by the beam but should still survive one shot	
Scrapor		Craphito
TIDP	Momentum collimator. n/a	
TPSG	450 GeV: Assume all beam in one Sandwich: graphite spot CfC, Ti, Inconel	
TCDIs	450 GeV. Graphite	
TDI	450 GeV	Sandwich: Graphite and CuCrZr

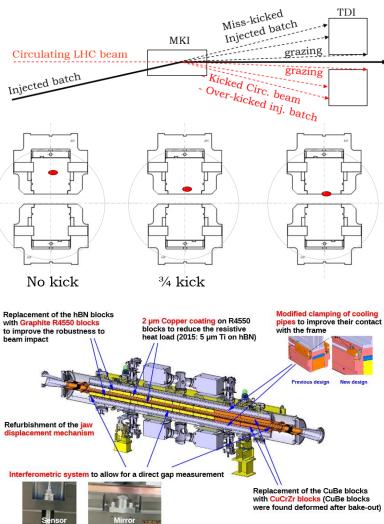
Device	Comment	Material
TIDVG#4	Sweep, intensity limitation not brightness. Continuous dumping problematicSandwich: Graphite, CuCrZr and W	
TIDH	Sweep. Dump at 28 GeV	AI
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should never be impacted by the beam but should still survive one shot	
Scraper		Graphita
TIDP	Momentum collimator. n/a	
TPSG	150 GeV/: Assume all beam in one	Sandwich: graphite <->
	spot	CfC, Ti, Inconel
TCDIs	450 GeV.	Graphite
TDI	450 GeV	Sandwich: Graphite and CuCrZr


SPS betatron and momentum (TIDP) scrapers

Device	Comment	Material	
TIDVG#4	Sweep, intensity limitation not brightness. Continuous dumping problematic		
TIDH	Sweep. Dump at 28 GeV	AI	
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel	
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu	
TED HiRadMat	450 GeV		
TBSE	450 GeV. Should never be impacted by the beam but should still survive one shot		
Scraper		Graphite	
TIDP	Momentum collimator. n/a		
TPSG	450 GeV/: Assume all beam in one	Sandwich: graphite <->	
	spot	CfC, Ti, Inconel	
	150 GaV	Graphite	
TDI	450 GeV	Sandwich: Graphite and CuCrZr	


SPS protection elements (TPSG)

Device	Comment	Material
TIDVG#4	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, CuCrZr and W
TIDH	Sweep. Dump at 28 GeV	AI
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu
TED HiRadMat	450 GeV	
TBSE	450 GeV. Should never be impacted by the beam but should still survive one shot	
Scraper		Graphite
TIDP	Momentum collimator. n/a	
TPSG	450 GeV: Assume all beam in one spot Sandwich: graphite <- CfC, Ti, Inconel	
TODIo	150 CoV. Craphite	
וחד	450 GeV Sandwich: Graphite ar CuCrZr	


TL collimators

Aim: protect injection septum (MSI) and LHC aperture

Injection protection: TDI

Device	Comment	Material	
TIDVG#4	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, CuCrZr and W	
TIDH	Sweep. Dump at 28 GeV	AI	
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel	
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu	
TED HiRadMat	450 GeV		
TBSE	450 GeV. Should never be impacted by the beam but should still survive one shot		
Scraper	Graphite		
TIDP	Momentum collimator. n/a		
TPSG	450 GeV: Assume all beam in one Sandwich: graphite < CfC, Ti, Inconel		
TCDIs	450 GeV. Graphite		
וחד	450 GeV	Sandwich: Graphite and CuCrZr	

Device	Comment	Material	Ok for Run 2 BCMS Beam?
TIDVG#4	Sweep, intensity limitation not brightness. Continuous dumping problematic	Sandwich: Graphite, CuCrZr and W	YES
TIDH	Sweep. Dump at 28 GeV	AI	YES
TBSJ	Injection dump: 26 GeV. Max intensity: 72 (48) bunches per shot	Stainless steel	YES
TED LHC	450 GeV. Continuous dumping problematic. Graphite not in vacuum	Sandwich: Graphite, Al, Cu-Be, Cu	YES (interlock on intensity for TED in TT60?)
TED HiRadMat	450 GeV		YES
TBSE	450 GeV. Should never be impacted by the beam but should still survive one shot		YES
Scraper		Graphite	YES
TIDP	Momentum collimator. n/a		YES
TPSG	450 GeV: Assume all beam in one spot	Sandwich: graphite <-> CfC, Ti, Inconel	YES
TCDIs	450 GeV.	Graphite	Limited to 144 BCMS bunches
TDI	450 GeV	Sandwich: Graphite and CuCrZr	YES

TCDI Robustness

- FLUKA and ANSYS studies defined as a maximum allowed intensity: 240 Run 2 BCMS bunches
- 1 σ impact parameter at TCDI location with smallest $\sigma_x \times \sigma_y$

Beam status	Emittance [Pi.mm.mrad]	Spot Size (βx*βy) [m^2]	Bunch Intensity	Material	Number of Bunches	Max. Temperature [°C]	Tens. Strength /Max Tens. Stress	Comp. Strength /Max Comp. Stress	Mohr-Coulomb S.F.	Status						
		1.39 1238.8 1			288	1400	30/32	118/81	0.9	×						
Run2 BCMS	1.39		1238.8	1238.8	1238.8 1.3e1	1.3e11	1.3e11	1.3e11	1.3e11	1.3e11		240	1250	30/24	118/75	1.44
				Graphite	192	1043	30/18	118/58	1.75	<						
Run2 Standard	2.6	1238.8	1.3e11		288	862	30/15	118/42.5	2	~						

New HiRadMat tests next year \rightarrow can we revise this limit?

Limitation defined as from Attenuation formula: **144 Run 2 BCMS bunches**. TCDIs 1 m long quasi-transparent collimator (compare to 4 m long TDI with higher Z at the end). They **only attenuate by factor 20**.

TCDI Philosophy: in case of any possible failure and consequent impact of the "transmitted beam" (scattered primary protons by TCDIs) on the MSI and/or LHC aperture → no damage!

- Do we need to revise this philosophy?
- What is the gain wrt the risk?
- How do we decide if we are too conservative:
 - Simulate all possible failures (feasible?)
 - **Try to identify the worst failure scenario** (really the worst?)

Failure Scenarios SPS-to-LHC

SPS Fast Extraction Interlock (**FEI**) combined with Fast Current Change Monitors (**FMCM**) and Beam energy Tracking System (**BETS**) on critical extraction and transfer line magnet circuits

- Single failure \rightarrow grazing or quasi-grazing (0σ and 1σ impact parameter respectively)
- ▶ Double failures (discarded) → large impact parameter if reaching the TCDIs depending on where the failure occurs in the line

MKE failures:

- ▶ Erratic or asynchronous → beam swept and diluted over the TCDI jaws
- Internal breakdown when pulsing → possible escaping edge of TPSG with 80% nominal amplitude → all extracted beam on one TCDIH with fixed impact parameter (between grazing and ~7σ). BUT the recent reconfiguration with short-circuit terminations reduced the MKE voltage and thus the risk of flashover.

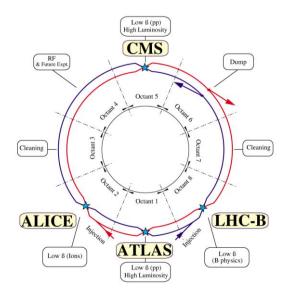
Energy error (BIS limits ±0.6%) → beam extracted on a dispersive trajectory:

- ▶ ±0.6%: beam lost on upstream aperture of TI2 and TI8
- ±0.16% ±0.20% : TCDI grazing in TI2 and TI8 respectively
- ±0.5% (limit from BPMs interlock): large impact parameter (~5σ) at one TCDIH (largest dispersion: TCDIH.29050 and TCDIH.87441).

Possible any impact parameter from 0σ up to $7\sigma \rightarrow$ up to 12σ oscillations

LHC Aperture

Newest calculations, very close to present LHC at injection


Table 2: Calculated apertures at injection in HL-LHC, using optics version 1.2 and the new HL-LHC parameters in Table 1. The table shows for each section of the machine, the minimum calculated aperture in each beam, as well as the element where this aperture is found. All values assume a normalized emittance of 2.5 µm.

Machine	Element B1	Aperture B1	Element B2	Aperture B2
section		<i>(σ)</i>		<i>(σ)</i>
IR1	MQML.10R1.B1	13.3	MQML.10L1.B2	12.8
IR2	TCLIM.6R2.B1	12.9	MQML.8R2.B2	13.0
IR3	MQ.8R3.B1	13.2	MQ.11R3.B2	12.9
IR4	MQ.11R4.B1	13.1	MQML.8R4.B2	13.0
IR5	MQ.11L5.B1	13.1	MQML.10L5.B2	12.9
IR6	MQY.B5L6.B1	12.8	TCDQM.B4L6.B2	12.8
IR7	MQTLI.11L7.B1	13.0	MQ.8L7.B2	13.0
IR8	MQXA.1L8	13.0	TCLIM.6L8.B2	13.1
Arc12	MCBV.16L2.B1	13.4	MCBV.15L2.B2	13.4
Arc23	MCBV.15R2.B1	13.3	MCBV.26L3.B2	13.3
Arc34	MCBV.14R3.B1	13.3	MCBV.17R3.B2	13.3
Arc45	MCBV.17R4.B1	13.4	MCBV.16R4.B2	13.4
Arc56	MCBV.14R5.B1	13.4	MCBV.17R5.B2	13.4
Arc67	MCBV.17R6.B1	13.3	MCBV.16R6.B2	13.3
Arc78	MCBV.16R7.B1	13.3	MCBV.15R7.B2	13.3
Arc81	MCBV.17L1.B1	13.4	MCBV.14L1.B2	13.3

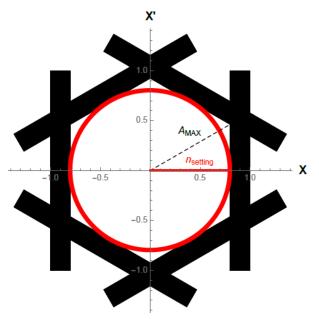
(Nominal norm. emittance)

Arc aperture: 11.2 σ

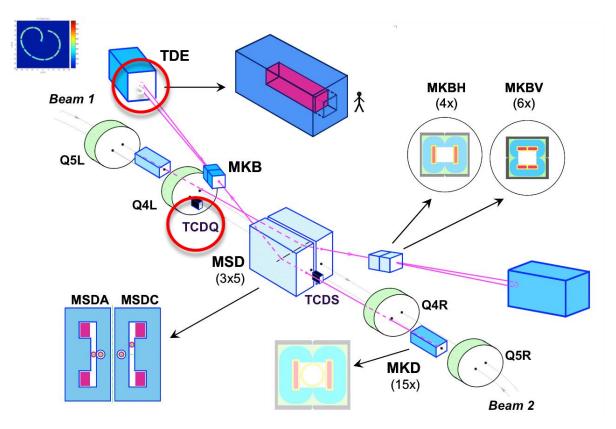
Global bottleneck: Beam 1= 10.8 σ @ MQY.B5L6 Beam 2 = 11 σ @ MQ.8L7.B2

among other errors: **2 mm orbit** and 2σ injection oscillations

Possible hit LHC Aperture?

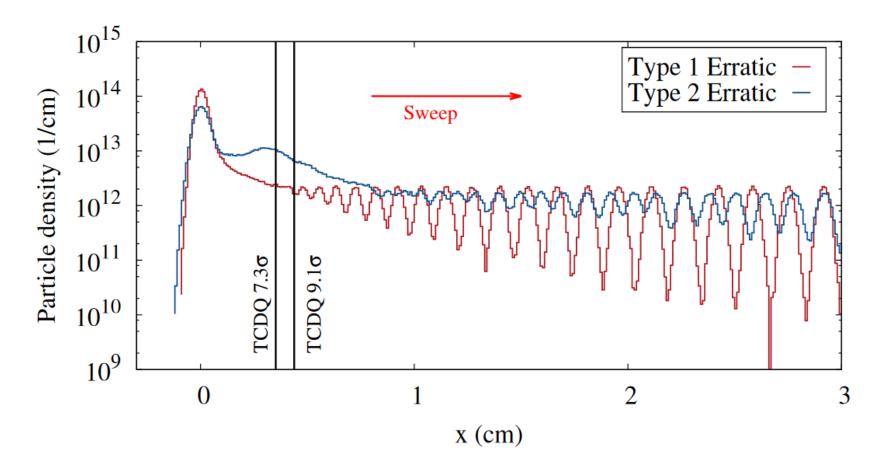

Fundamental assumptions:

- One of the mentioned failures occurs
- The beam intercepts only **one TCDI**
- **"Enough" beam** goes **through the MSI** (0-180° phase advance from intercepted TCDI, upstream mask aperture: $10\sigma_x \times 7\sigma_v$)


TCDIs at 5σ :

- Maximum escaping amplitude (including errors)
 A_{max} = 7.4σ
- Quasi-grazing (1σ impact parameter) → 8.4σ oscillation → 2.4σ margin to LHC aperture
- Worst case TCDI impact parameter to be identified (indicatively 3.4σ-5.8σ)
- One should not neglect **local orbit bumps** in the LHC!

To be studied in details if possible! Any other (worse) case possible?



Any Limitation at Top Energy?

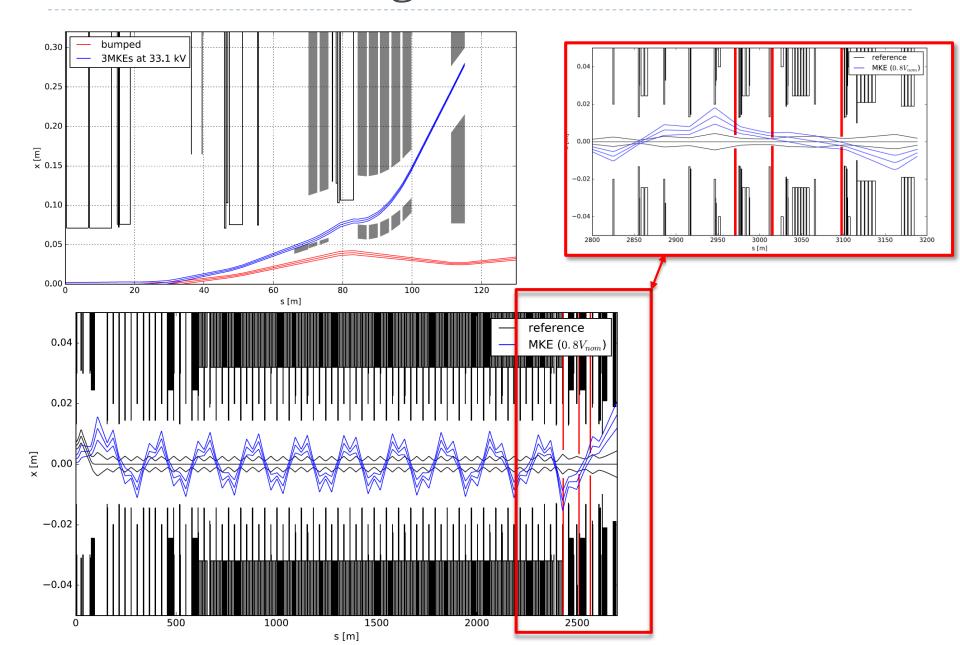
- Very little dependence on beam size (intensity plays the main role)
- TCDS designed for ultimate intensity and energy deposition for Type 2 erratic equivalent to type 1 \rightarrow OK (only plastic deformation for Ti part for HL-beams)
- ▶ TDE and Window designed for ultimate intensity \rightarrow OK
- Type 2 erratic \rightarrow energy deposition on TCDQ (tight settings!)

9.1 σ vs **7.3** σ :

9.1 σ vs **7.3** σ (-0.5 σ misalignment):

2.56.8**σ** 8.6**σ** ⊸ CfC (1.7 g/cm^3) 2 Peak dose (kJ/cm³) 1.5 $CfC (1.4 g/cm^3)$ $CfC (1.7 g/cm^3)$ TCDQU TCDQC TCDQD 0.5 0 142 144 146 148 150 152 Distance from IP6 (m)

BCMS ($\epsilon_n = 1.37 \mu m \text{ rad}, 1.3 \times 10^{11} \text{ ppb}$)


TCDQ: **stresses expected to be within limits** (as suggested by HL simulations) **Q5** coils: energy density expected to reach **20-25** J/cm³ (damage limits of NbTi being assessed)

Conclusions

- No intensity limitation is expected in the SPS if the TIDVG#4 will be ready and installed during the EYETS → 288 nominal and Run II BCMS bunches
- Only intensity limitation for Run II BCMS beams comes from the TCDIs (TT40 damage test):
 - **Robustness: 240 bunches**(foreseen HiRadMat tests)
 - Attenuation:144 bunches → basic principle of passive protection system: guarantee no damage of LHC components for any possible (even unknown..) failure scenario (present design and upgrade!)
 - Are currently assumed damage limit at 450 GeV too conservative?
 - **Large oscillations** down the line **cannot be excluded**. What are the **consequences** for the injection region (including the MSI) or further downstream in the LHC?
 - Detailed tracking and FLUKA studies will follow (impact parameter scan)
 - Need to insure that worst failure scenario correctly identified!
 - Does the low probability justify the taken precautions and limits on high brightness beams?
- No limitation for high energy operation with 2017 beam parameters and settings (TCDQ,TCDS and TDE)

Thank you!

80% MKE Strength

