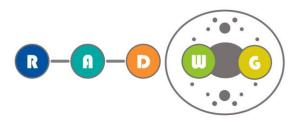
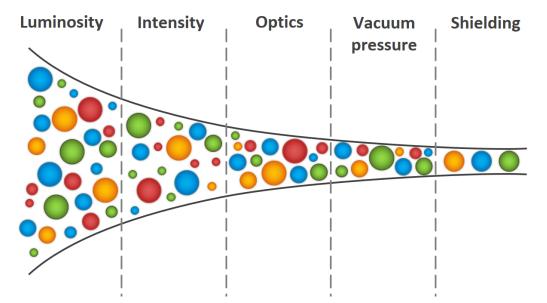
Radiation To Electronics – 2016 Run


Salvatore Danzeca (EN/STI) on behalf of the R2E Project, RADWG and MCWG

Thanks to: M.Brugger, A. Masi, S. Gilardoni, F. Cerutti, R.G.Alia, C. Xu, Y. Kadi, C.Martinella, O. Stein, V. Montabonnet, Y. Thurel, S.Uznanski, B. Todd, O. Brunner, V. Senaj


Overview

- Radiation levels in the 2015 vs 2016
 - Luminosity driven
 - Intensity driven
 - Shielded areas
- Failure analysis and expected failures
- Conclusions

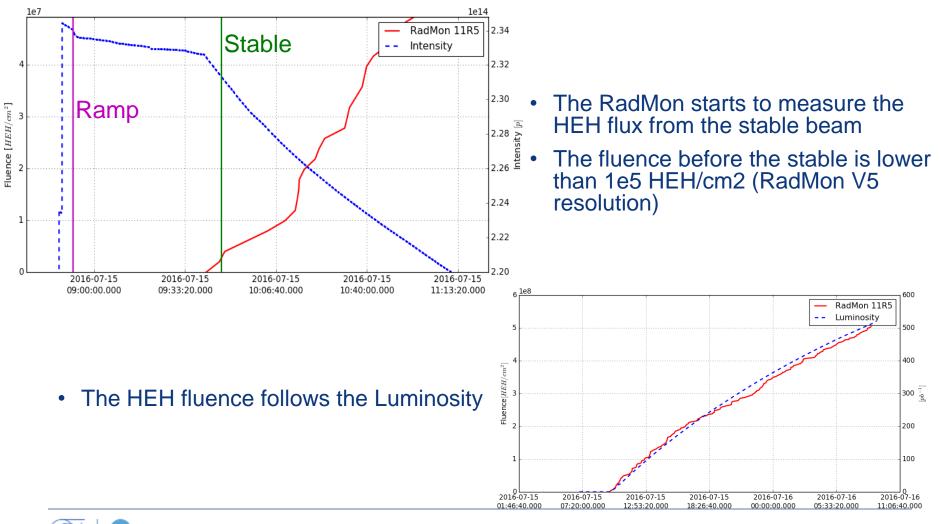
Radiation Failures and radiation levels

- Why we see so low failures radiation induced?
- Failure rate is proportional to the radiation levels
- The radiation levels are related to several factors:

Failure rate is proportional to the effort put in mitigation and prevention

Radiation Levels – Tunnel Areas

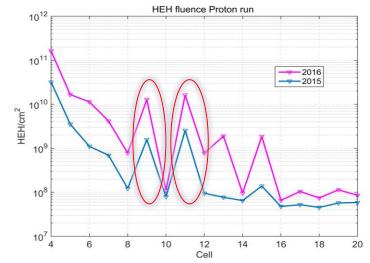
• Tunnel areas – several equipment installed: QPS, EPC, Cryo



- Analysis based on the RadMon measurements for the entire proton run 2016 and 2015
- The average of all the points is computed (except point 7)
- Odd cells and LSS cells are luminosity driven for the interaction points
- In the deep ARC (> cell 16) and in the even cell the radiation levels are proportional to the integrated intensity
- Presence of localized losses

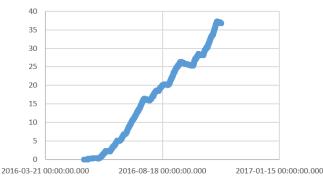
Tunnel areas – Luminosity driven

• Let's take the RadMon in 11R5 as a reference point and the fill 5096



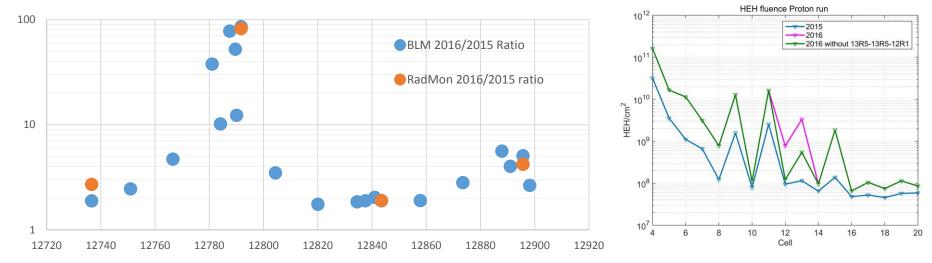
13/12/2016

Tunnel areas – Luminosity driven


• We can normalize as function of the luminosity

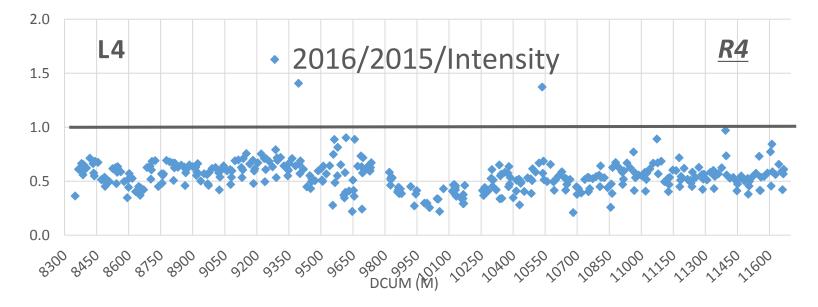
Cell	HEH/cm2/pb-1
11L1	806.2
11L5	568.0
11R1	1590.5
11R5	963.8
9L1	945.5
9L5	846.5
9R1	516.7
9R5	1007.8

- Higher probability of events in these cells (but few systems compared to the total)
- Electronics however affected by TID degradation, risking complete system failure in the long-term
- The long term effects should be taken into account by a continuous monitoring and reporting.
- The strategy for the LS2 is to foresee a 'chaise musicale' substituting the equipment located in these cells with the ones located in the ARC


TID in 11L1

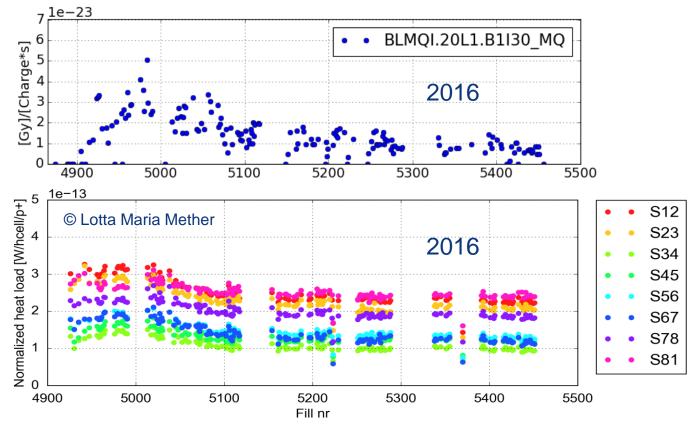
Localized high loss

 In cell 13L5 of Point 5 the levels are 80 times higher than the 2015 measured by both RadMons and BLMs



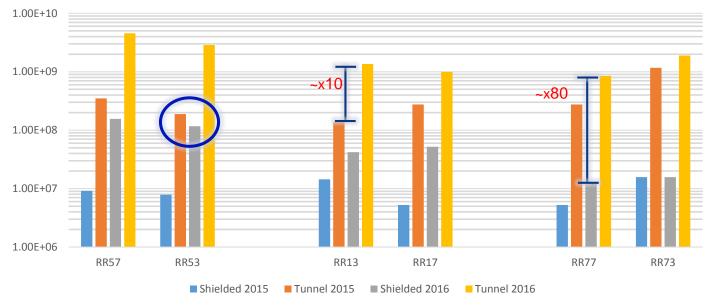
- Cell 13R5 is less charged than the left side
- 12R1 is the other hot spot for the proton Run in 2016
- This information are analysed by the MCWG and distributed to the equipment responsible through the RADWG

Tunnel areas – Integrated intensity

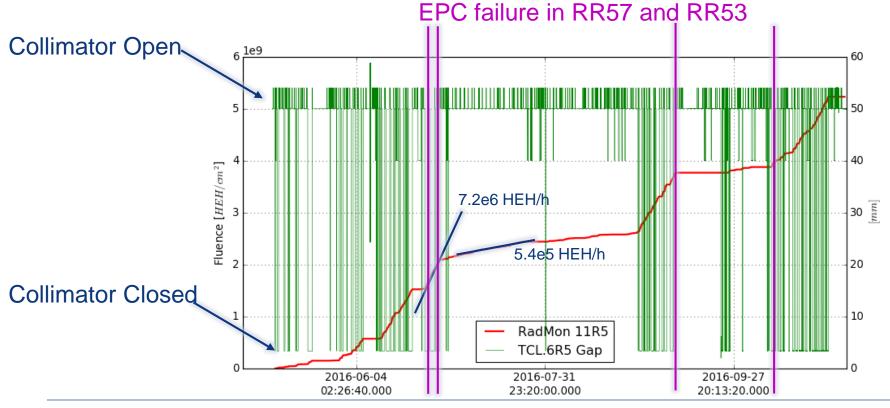

- Most of the electronic systems are located in the ARC
- <u>2016</u>: ~2x less integrated intensity per integrated luminosity (β^{*}, crossing angle, etc.)
- Observed levels were an additional factor 2 smaller
- Possible improvement in the vacuum levels reducing beam-gas interactions
- This is one of the reason why we saw less events than expected

BLM normalized value in stable beam

- Integrated BLM dose in stable beam normalized by the integrated intensity
- The same pattern is found also in other sectors
- The BLM pattern is similar to the one of the heat load indicating a possible conditioning effect
- 2017 measurements to be used for final extrapolation



Shielded areas


- RR13/17/53/57 shielded improvement during the LS1
- RadMon measurements cover the Tunnel side of the RR and the internal side of the RR
- HEH fluence in the RR areas scale with the luminosity apart from the RR73/77
- Operational parameters can have important impact (i.e TCL6 impact on the RR1x RR5x)
 RR Shielded Areas

Impact on the RR of the TCL.6

- This year only in Point 5 the TCL.6 were closed (20 sigma) in most of the physic runs
- We can have an estimation of the impact of TCL.6 on the radiation levels comparing the closed and open operation
- The HEH flux increase of a factor 13 when the collimators are closed

	Power part		Control			
EPC		Dumps		Dumps		
	2012			15	10	
	2015	3		3	4	
	2016			3	4* (1 in Ion Run)	*To be confirmed
2015 Failures and strategies			2016 Failures			
 Locations in 2015: ARC, RR77, RR57 Failure types in 2015: FGC2 120A Mitigations: WATCHDOG fault on the power converter should be corrected by a patch during this YETS Start the deployment of the FGClite partially during the EYETS 2016 		ter	0001/0 1/TAB3			

QPS - TE-ABT and RF

- QPS only two failures during the ion run. Not yet confirmed
 - Deployment of the new Radiation Tolerand 600A QDS design in the RR during the YETS leads to no dumps.
- 2 events suspected to be radiation related on the MKBH but finally confirmed not to be (dust related)
- The monitor requirements are challenging
 - The expected hadron fluence is 5e4 HEH/cm2/year in UA63/67
 - The New York hadron fluence is 5e5 HEH/cm2/year
 - Currently we installed 11 RadMon
 - 0 Events recorded on all the detectors: <8e4 HEH/cm2/y

RA63	STD0079
el e e e e e e e e e e e e e e e e e e	
BatMONs sRAM 5V BatMONs sRAM	3V UA63 Installation réalisée

• No event on RF system thanks to the mitigation actions taken on the klystron : double AD channels + rad hard optical fiber

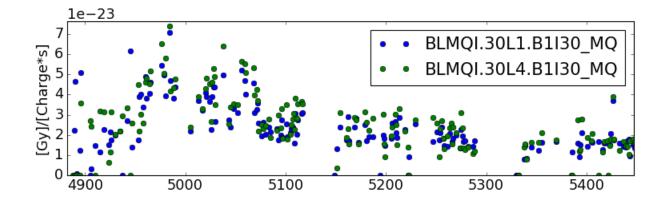
Failures Overview

Equipment	Dump 2012	Dump 2015	Dump 2016	
QPS	32	2	0 + 2* ion	
Power Converter	15	5	6+ 1* ion	
Cryo	4	0	0	
EN/EL	1	0	0	
Vacuum	4	0	0	
Collimation	1	0	0	
TE/ABT		0	0	
RF	1	4	0	
Others (hidden)	-	_	_	
Total	3 /fb ⁻¹	3 /fb ⁻¹ 1.2 /fb ⁻¹	0.15/fb ⁻¹ (proton run)	

Conclusions

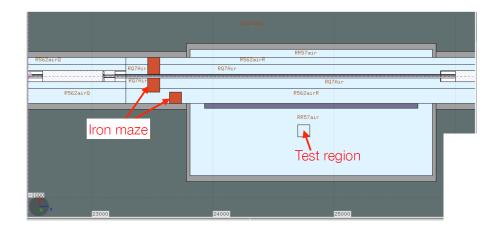
- Why we see so low failures radiation induced?
- In the luminosity driven cells, the radiation levels are higher this year compared to the 2015 but the system affected are few compared to the total number of systems. FGCs are not located in these cells
- We have to monitor continuously for long term degradation of electronics (TID effects)
- The radiation levels in the ARC did not scale with luminosity as conservatively assumed in 2015
 - Additional factor 2 of reduction scaling with the intensity could be due to a conditioning effect
- Increased radiation level in the shielded areas can lead to more failures (luminosity driven points)
 - If the TCL6 settings will change also in Point 1 we should expect a higher rate of failures
- Strategy:
 - Radiation level measurements and analysis on weekly basis
 - Follow-up the equipment failures
 - FGClite deployment in the ARC will keep the situation calm in the ARC
 - FGClite deployment in the RR is scheduled for the 2017-2018 YETS
 - Relocation/Shielding if needed
 - Follow-up the new development supporting the radiation tests and the correctness of the qualification process

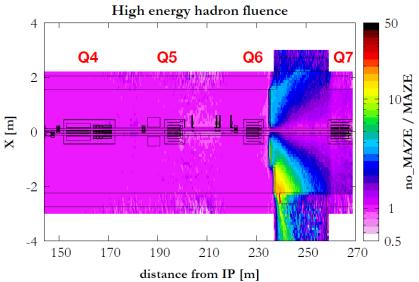
Thank you


Backup

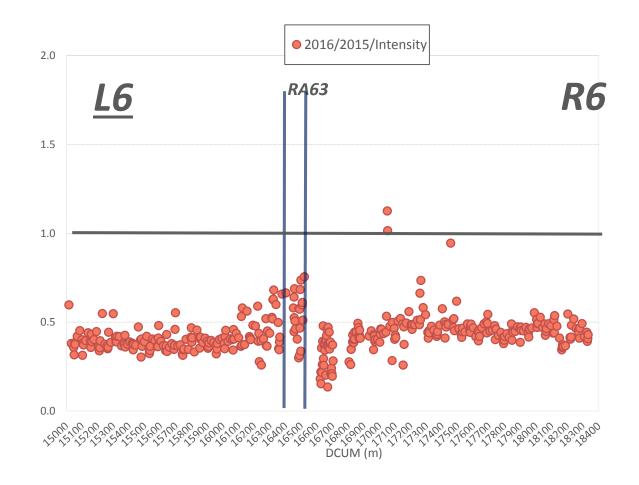
EPC Failure 2016

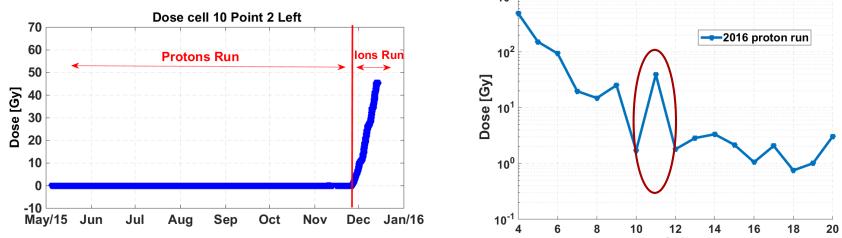
RPHGA.RR13.RQ10.L1	31/05/2016	RR13	Voltage Source Electronics	CANDIDATE	1	TRIP / DUMP
B2						
RPMBB.RR57.ROD.A56	24/06/2016	RR57	Aux Power Supply	CONFIRMED	1	TRIP / DUMP
B2						
RPMBB.RR53.ROD.A45	28/06/2016	RR53	Aux Power Supply	CONFIRMED	1	TRIP / DUMP
B2						
RPMBB.RR53.ROF.A45	04/07/2016		FGC TRI VOLT PSU ?	CANDIDATE	1	TRIP / DUMP
B1/B2						
RPMBA.RR17.RQT12.R	10/07/2016	RR17	FGC ?	NO DUMP	0	TRIP / NO DUMP
1B1						
RPHGA.RR57.RQ7.R5B	19/07/2016	RR57	ADC Filter (FGC) *	NO DUMP	0	NO TRIP / NO
2						DUMP
RPMBA.RR53.RQT13.L	10/09/2016	RR53	Converter internal Fault	CANDIDATE	1	TRIP / DUMP
5B1						
RPLB.RR57.RCBCH6.R5	12/09/2016	RR57	ADC Filter (FGC) *	NO DUMP	0	NO TRIP / NO
B2						DUMP
RPLB.RR57.RCBYH4.R5	15/09/2016	RR57	DIM Card **	NO DUMP	0	NO TRIP / NO
B2						DUMP
RPLB.RR53.RCBCV5.L5	28/09/2016	RR53	Voltage Source WatchDOG	NO DUMP	0	NO TRIP / NO
B1						DUMP
RPMBA.RR57.RQT13.R	09/10/2016	RR57	FGC – Com lost	CONFIRMED	1	TRIP / DUMP
5B1						
RPMBB.RR13.RSS.A81	19/11/2016	RR13	ADC Filter (FGC) *	NO DUMP	0	NO TRIP / NO
B2						DUMP
RPMBB.RR13.ROD.A81	23/11/2016	RR13	FGC – Com lost	CANDIDATE	1	TRIP / DUMP
B1						


Sector Comparison



Shielding RR


 From: Collimation meeting: M. Brugger, F. Cerutti, L.S. Esposito FLUKA studies on the radiation in the Point 5 Q6-Q7 area: Roman Pots, TCL6 and RR


RA63 BLM intensity normalized

Looking at the future

• It is and it will be not only a question of SEE: long term TID effects will become an issue

- Ions run losses reduce the lifetime of the equipment
- The increase of the radiation levels due to higher luminosity (2016-2017) may lead to pre-emptive maintenance of several equipment

