Machine Development

$7^{\text {th }}$ Evian Workshop, 13-15 December 2016

J. Uythoven, R. Tomas, G. Papotti

Thanks to all MD participants, equipment groups support, $® M P P$ and $O P$

Machine Development

- 2016
\square Organisation, Highlights \& Statistics
\square Lessons \& Machine Protection
\square End of Fill MDs
- 2017
\square First inventory of request
\square Does it fit the schedule?
- Conclusions

MDs in 2016 - The Plan

 4 Blocks, 22 days, evenly spread

MDs in 2016: What Happened 20 days in 5 blocks over 14 weeks

+ End of Fill MDs

$+1 / 2$ day of ion MD

Example of MD5 juggling

Organisation

An 11-Step Approach for each MD block

1. MD requests submitted at https://md-coord.web.cern.ch
2. Selection made by MD coordination, presentation of MDs at the LSWG
3. Small fraction of MDs rejected
4. First feedback on MDs, modifications
5. Approval of topics in the LMC
6. Written procedures submitted \rightarrow to be done at least 2 wks before MD
7. Beam requests to the injectors (FOM) \rightarrow to be done at least 2 wks before MD
8. Procedures reviewed by ®MPP, Class C presented at rMPP meeting and for approval in EDMS
9. MD schedule
10. MD
11. Procedures on the table
12. No shuffling of MDs
13. LSWG to present results
14. Summary of LSWG in LMC
15. ATS-MD note written

Practically very difficult towards the end of the year: high pile-up of MD events

$$
\begin{gathered}
\text { MD notes } 2016 \\
5 \text { notes / } 56 \text { MDs } \\
\text { Not going very strong ! } \\
\text { Deadline } 16 \text { December }
\end{gathered}
$$

Organisation

An 11-Step Approach for each MD block

1. MD requests submitted at https://md-coord.web.cern.ch
2. Selection made by MD coordination, presentation of MDs at the LSWG
3. Small fraction of MDs rejected
4. First feedback on MDs, modifications
5. Approval of topics in the LMC
6. Written procedures submitted \rightarrow to be done at least 2
7. Beam requests to the injectors (FOM) \rightarrow to be done
8. Procedures reviewed by ®MPP, Class C pres® approval in edms
9. MD schedule
10. MD
11. Procedures on the table
12. No shuffling of MDs
13. LSWG to present results
14. Summary of LSWG in LM
15. ATS-MD note written

MD notes 2016
5 notes / 56 MDs Not going very strong! Deadline 16 December

MD Statistics 2016

- 20.5 days scheduled
\square These are 492 h ; actually 416 h (85%) on schedule because of recovery between MDs at top energy
\square These 2 hours of recovery give a big psychological advantage
- Plan for 1 hour between the MDs at injection as of 2017
$\square 348$ hours of Scheduled MD took place in 2016. This is an average availability of 84 \% (identical to machine availability of the machine between TS2 and TS3)
- Total number of MDs: 56
- With a good machine availability 20.5 days schedule \rightarrow 14.5 MD days net which is 70% of total efficiency

Availability during MDs [\%]

Collimation beats the Collective Effects

Classification of effective MD hours per category for 2016

MDs 2016 Highlights

- See many presentation at this workshop
- RF bunch flattening
- DOROS BPMS, used for transverse coupling correction with minimum excitation

- Single bunch instabilities
- Crystal collimation

MDs 2016 Highlights

Crossing angle scans

Lead to reduction of crossing angle for normal operation in second half to 2016

6. $\frac{2}{3}$ Resonant excitation MD

Evian, וuוucuiu

MDs 2016 Highlights

Shift start
Single nominal
Octupoles off
Chroma +5...+20

Trains: 1x12b, 6x96b
Octupoles on
Chroma 0...+20

Extract the chromaticity from the measured Schottky sidebands

- Tune shift just below 0.02 measured with the BBQ (similar to operation at 4 TeV in 2012)
- Three families of bunches visible
- High brightness bunches compatible with :

Bunch intensity 1.9E11
Emittance 1.5E-6
Bunch Length 9 cm
\rightarrow Pile up of ~ 160

- Measured pile up (ATLAS and CMS) ~90
- The discrepancy cannot be attributed to the lumimeters' non-linearity (W. Kozanecki)
- Yokoya factor could explain $\sim 20 \%$

Average μ per lumi block

High pileup fill 5412 gave CMS invaluable information to...

MDs 2016 Highlights

- Clear impact on lifetime observed when changing b_{6} corrector strength

MD5 - TCPs at 5.0σ and TCSGs at 6.5σ

\checkmark Very similar lifetime and transmission with respect to standard 2016 physics fill with TCPs and TCSGs at 5.5σ and 7.5σ, respectively
\rightarrow ATS telescopic optics down to 10 cm with probes

- Overall mechanics successfully tested down to $\beta^{*}=10 \mathrm{~cm}$
- Optics measurement @ $\beta^{*}=33 \mathrm{~cm} / 21 \mathrm{~cm} / 14 \mathrm{~cm} / 10 \mathrm{~cm}$
- State of the art optics correction demonstrated @ $\beta^{*}=21 \mathrm{~cm}$
- Chromatic properties fully demonstrated @ $\beta^{*}=21 \mathrm{~cm}$

Within reach for 2017, tightening a little bit further the collimation hierarchy !! (assuming X-angle OK for beam-beam: $9.0 \sigma @ \beta^{*}=33 \mathrm{~cm}, \gamma \varepsilon=2.2 \mu \mathrm{~m}$ \& 6.5 TeV) $140 \mu \mathrm{~m}$

End of Fill MDs \& Single Ion MD

- 15 End of Fill MDs with procedure
\square MD procedures written
\square Checked by ®MPP
\square Good collaboration with OP and Physics Coordinators
\square Extremely useful and efficient use of machine time
\square Sometimes difficult to limit in time ...
- Single 12 h ion MD
\square MD moved at the last moment \rightarrow use of parallel beam not well organised
\square Last minute, 'free' parallel proton beams

W㫫 TestSeparationStability.doc	22/10/2016 10:09
WIW MDXXX_TuneShiftatFlatTop.doc	21/10/2016 12:37
I HighPileupTestFill-Procedures.pdf	13/10/2016 17:33
W MD-XingAngle-Scans-IR15.docx	12/10/2016 21:45
WEE EOF249_ACSCavityVoltagePhaseModulat...	12/10/2016 13:33
W-WD-end_of_fill--TCT_closure.doc	11/10/2016 15:43
(w) MD1291_Halo-Scraping-Diffusion_v2.doc	04/07/2016 10:18
W- MD1279 Bunch flattening v2.doc	13/06/2016 16:21
W) MD1224-VACUUM-BKGD-TEST-v2.docx	08/06/2016 15:42
W- MD1291_Halo-Scraping-Diffusion_v1.doc	10/05/2016 13:51
2 MD1483 procedure.IRNL.EoF.pdf	29/04/2016 17:41
W MD1224-VACUUM-BKGD-TEST-v1.docx	26/04/2016 13:59
W- MD1280 single bunch longitudinal stabili...	19/04/2016 14:29
W- MD1228_EOF_SingleBunchlnstability.doc	15/04/2016 16:33
WIE MD1213_OPscan.doc	04/04/2016 14:53

\square To be avoided for Machine Protection reasons !!

EoF and parallel MDs highly encouraged for 2017, but staying with standard flow: MD-Coord \rightarrow ®MPP \rightarrow OP

Do you want any MDs in 2017?

- Question asked to 2016 key MD players about 10 days ago. This resulted in an inventory of
$\square 85$ Different MDs
\square Estimate of 748 hours of MD time $\rightarrow 44$ Days of MD assuming 2016 efficiency
\square Plus 72 hours of End of Fill MD
2017 MD INVENTORY, CATEGORIES

Rough MD Inventory for 2017

2017 DRAFT SCEDULE

Comparing 2017 requests to 2016 done

Conclusions

- 2016 was an extremely successful LHC year, also for MDs
\square See many presentations at this Evian workshop reporting on great results
\square Important for LHC operation and future machines
\square Difficult due to high MD pile-up towards the end of the year
- Recovery \& Settings clean up can be improved
\square Need to be even more explicit in procedures?
\square Responsibility of OP to carefully follow this up and roll-back
- Short MD blocks are easier to manage for MD participants and also for MD coordination
- 2017 rough MD inventory made
$\square 44$ days of dedicated MDs requested vs. 15 on schedule:
THIS SEEMS TO BE BELOW THE MINIMUM if one wants to keep up the excellent work, investing in the future for LHC, HL-LHC and FCC
- Request 3 days of floating MDs on top of present schedule
\square One should again use EoF and parallel MDs as much as possible, inventory of 72 hours EoF; stick to MD-coordination $\rightarrow ®$ MPP \rightarrow OP

