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Motivations

Our goal is to study QCD in the saturation regime
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The production of forward particles is a crucial tool to probe small x values

Saturation e�ects stronger in pA collisions (Q2
s ∼ A1/3)

Here we study the inclusive production of forward hadrons in proton-nucleus
collisions: pA→ hX
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Motivations

Typical calculation at LO:
(Lappi, Mäntysaari)
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BRAHMS y = 3.2 h− ×10
PHENIX 3 < y < 3.8 π0 ×1
STAR y = 3.3 π0 ×0.1
STAR y = 3.8 π0 ×0.05
STAR y = 4 π0 ×0.01

p + p→ π0/h− + X,
√
s = 200 GeV, K = 2.5

K factor needed to describe the data

First numerical calculation at NLO:
(Sta±to, Xiao, Zaslavsky)
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data

Negative cross section above some p⊥

Several proposals to solve the negativity problem at NLO, for example the kinematical
constraint / Io�e time cuto� (Altinoluk, Armesto, Beuf, Kovner, Lublinsky). Numerical
implementation: Watanabe, Xiao, Yuan, Zaslavsky. Can extend the positivity range but
doesn't solve the problem completely.
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Formalism

Single inclusive forward hadron production at LO in the q → q channel:

P+

P−

xpP
+

xgP
−+k⊥

p⊥ = zk⊥, yPDF FF

UGD

Dilute projectile: xp =
k⊥√
s
ey, described by collinear PDFs

Dense target: xg =
k⊥√
s
e−y � 1, described by unintegrated gluon distribution F

F(k⊥) =

∫
d2bS(k⊥) , S(k⊥) =

∫
d2re−ik·rS(r) , S(r = x− y) =

〈
1

Nc

TrV (x)V †(y)

〉
Rapidity (or x) dependence of S : governed by the Balitsky-Kovchegov equation

4 / 21



Formalism

NLO corrections to the impact factor: Chirilli, Xiao, Yuan

Example of real q → q contribution:
P+

P−

xpP
+

XP−+q⊥

p⊥ = zk⊥, y
kµq

kµg

Example of virtual q → q contribution:
P+

P−

xpP
+

XP−+k⊥

p⊥ = zk⊥, y
kµq

kµg

1− ξ =
k+g

xpP+ is the momentum fraction of the incoming quark carried by the gluon
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LO vs. NLO

Taking into account Balitsky-Kovchegov (BK) evolution: resummation of any
number of soft gluons, already at LO

LO: all the emitted gluons are soft:

soft (ξ ∼ 1)

....

NLO impact factor: the �rst gluon can be hard:

exact (any ξ)

....

⇒ Need to avoid double counting between LO and NLO

6 / 21



LO vs. NLO

Two possible solutions to avoid double counting:

1) Subtract the case where the gluon in the NLO impact factor is soft
Chirilli, Xiao, Yuan ('CXY')

2) Rearrange the terms to avoid doing a subtraction. The expression for the
cross section is explicitly positive
Iancu, Mueller, Triantafyllopoulos

+

exact

....

These two choices should be equivalent
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The NLO cross section

The expression for the (quark production) multiplicity at NLO reads

dNpA→qX

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
← No emission

+
αs
2π2

∫ ξmax

xp

dξ
1 + ξ2

1− ξ
xp
ξ
q

(
xp
ξ

){
CFI(k⊥, ξ,X(ξ)) +

Nc

2
J (k⊥, ξ,X(ξ))

}
← real

− αs
2π2

∫ ξmax

0

dξ
1 + ξ2

1− ξ xpq (xp)

{
CFIv(k⊥, ξ,X(ξ)) +

Nc

2
Jv(k⊥, ξ,X(ξ))

}
← virtual

I(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

[
k− q

(k− q)2
− k− ξq

(k− ξq)2

]2

S(q⊥, X(ξ))

J (k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

2(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥, X(ξ))

−
∫

d2q

(2π)2

d2l

(2π)2

2(k− ξq) · (k− l)

(k− ξq)2(k− l)2
S(q⊥, X(ξ))S(l⊥, X(ξ))

Iv(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

[
k− q

(k− q)2
− ξk− q

(ξk− q)2

]2

S(k⊥, X(ξ))

Jv(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

2(ξk− q) · (k− q)

(ξk− q)2(k− q)2
S(k⊥, X(ξ))

−
∫

d2q

(2π)2

d2l

(2π)2

2(ξk− q) · (l− q)

(ξk− q)2(l− q)2
S(k⊥, X(ξ))S(l⊥, X(ξ))

and
dσpA→hX

d2p dyh
=

∫
d2b

dNpA→hX

d2p dyh
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The NLO cross section

In the previous expressions:

xpq(xp)
S(k⊥, x0)

(2π)2
represents the lowest order contribution

(no BK evolution. x0: initial condition)

X(ξ) is the rapidity scale at which the dipole correlators are evaluated

At LO: the P− fraction needed from the target is
k⊥√
s
e−y ≡ xg

At NLO:

xpP
+

XP−+q⊥

kµq

k+
g = (1− ξ)xpP+

X =
k⊥√
s
e−y

(
1 +

ξ

1− ξ
(q⊥ − k⊥)2

k2
⊥

)
≈ xg

1− ξ ≡ X(ξ) when k⊥ & Qs

The limit ξ < 1− xg
x0
≡ ξmax enforces X(ξ) < x0
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CF terms

The terms proportional to CF are divergent when the additional gluon at NLO
is collinear to the initial or �nal state quark

These divergences are absorbed in the DGLAP evolution of the PDFs and
fragmentation functions

After subtracting the corresponding 1/ε poles, we should replace I and Iv by

I�nite(k⊥, ξ,X(ξ)) =

∫
d2r

4π
S(r, X(ξ)) ln

c20
r2µ2

(
e−ik·r +

1

ξ2
e
−i k

ξ
·r
)

−2

∫
d2q

(2π)2

(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥, X(ξ))

I�nitev (k⊥, ξ,X(ξ)) =
S(k⊥, X(ξ))

2π

(
ln
k2
⊥
µ2

+ ln(1− ξ)2

)
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CF terms

Results for the LO+CF NLO corrections at �xed coupling (αs = 0.2):
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The 'CXY' approximation corresponds to making the replacements X(ξ)→ xg
and ξmax → 1

In both cases the NLO corrections proportional to CF are positive → not the
cause of the negativity

(Initial condition for the BK evolution at x0 = 0.01: MV model

S(r, x0) = exp

[
−

r2Q2
s,0

4
ln

(
1

|r|ΛQCD

+ e

)]
, Q2

s,0 = 0.2 GeV2 and ΛQCD = 0.241 GeV)
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Nc terms

We can write the sum of the LO and Nc terms as

dNLO+Nc

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξK(k⊥, ξ,X(ξ)) ≡ dNLO+Nc,unsub

d2kdy
,

K(k⊥, ξ,X) =
Nc

(2π)2
(1 + ξ2)

[
θ(ξ − xp)

xp
ξ
q

(
xp
ξ

)
J (k⊥, ξ,X)− xpq (xp)Jv(k⊥, ξ,X)

]
.

At large k⊥ the function K(k⊥, ξ,X) is positive and so is the cross section.

Using the integral BK equation,

S(k⊥, xg) = S(k⊥, x0) + 2αsNc

∫ 1−xg/x0

0

dξ

1− ξ [J (k⊥, 1, X(ξ))− Jv(k⊥, 1, X(ξ))] ,

the LO+Nc terms can be rewritten as

dNLO+Nc,sub

d2kdy
= xpq(xp)

S(k⊥, xg)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξ [K(k⊥, ξ,X(ξ))−K(k⊥, 1, X(ξ))] .

The 'CXY' approximation corresponds to making the replacements X(ξ)→ xg
and ξmax → 1 in this subtracted version
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Nc terms

Results for the LO+Nc NLO corrections at �xed coupling (αs = 0.2):
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The 'subtracted' and 'unsubtracted' expressions give the same (positive) results

The 'CXY' approximation leads to negative results for k⊥ & 5 GeV.
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Total NLO multiplicity

Total (LO+CF+Nc) multiplicity (αs = 0.2):
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Similar conclusions as in the LO+Nc case
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Running coupling

The equivalence between the 'subtracted' and 'unsubtracted' formulations
holds only if one uses the same coupling αs when computing the cross section
and when solving the BK equation

In practice the BK equation is usually solved in coordinate space, with some
prescription for the running coupling

Fixed coupling BK equation:

∂S(r, X)

∂ lnX
= 2αsNc

∫
d2x

(2π)2

r2

x2(r− x)2

[
S(r, X)− S(x, X)S(r− x, X)

]
BK equation with Balitsky's prescription for the running coupling:

∂S(r, X)

∂ lnX
= 2αs(r

2)Nc

∫
d2x

(2π)2

[
S(r, X)− S(x, X)S(r− x, X)

]
×
[

r2

x2(r− x)2
+

1

x2

(
αs(x

2)

αs((r− x)2)
− 1

)
+

1

(r− x)2

(
αs((r− x)2)

αs(x2)
− 1

)]
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Running coupling

We use dipole correlators obtained by solving numerically the LO BK equation
with the Balitsky prescription for the running coupling. The initial condition is
the 'MVe' parametrization:

S(r, x0 = 0.01) = exp

[
−r2Q2

s,0

4
ln

(
1

|r|ΛQCD

+ ec · e
)]

,

and the running coupling is taken as αs(r
2) =

4π

β0 ln

(
4C2

r2Λ2
QCD

) .
The values Q2

s,0 = 0.06 GeV2, C2 = 7.2 and ec = 18.9 were obtained by a �t to
HERA DIS data (Lappi, Mäntysaari)

It is not possible to use the (coordinate-space) Balitsky prescription using the
previously shown momentum-space expressions for the cross section. Here we

will use αs(k
2
⊥) =

4π

β0 ln

(
C2
momk

2
⊥

Λ2
QCD

) , with C2
mom = 103
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Running coupling

Results with running coupling:
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The 'subtracted' and 'unsubtracted' expressions are no longer equivalent

'Subtracted' expression: closer to the 'CXY' result at small k⊥, negative results
at large k⊥
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Coordinate space formulation

Possible way to use consistently a coordinate-space running coupling: rewrite
the cross section expression in coordinate space.

We write J =
∫
d2re−ik·rJ̃ and Jv =

∫
d2re−ik·rJ̃v, with

J̃ (r, ξ,X)= 2

∫
d2x

(2π)2

x · (x− r)

x2(r− x)2

[
S(r− (1− ξ)x, X)− S(ξx, X)S(r− x, X)

]
,

J̃v(r, ξ,X)= 2

∫
d2x

(2π)2

1

x2

[
S(r + (1− ξ)x, X)− S(x, X)S(r− ξx, X)

]
.

(and similarly for the CF terms)

In these notations the BK equation reads

∂S(r, X)

∂ lnX
= −2αsNc

[
J̃ (r, 1, X)− J̃v(r, 1, X)

]
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Coordinate space formulation

BK equation with Balitsky's prescription for the running coupling:

∂S(r, X)

∂ lnX
= 2αs(r

2)Nc

∫
d2x

(2π)2

[
S(r, X)− S(x, X)S(r− x, X)

]
×
[

r2

x2(r− x)2
+

1

x2

(
αs(x

2)

αs((r− x)2)
− 1

)
+

1

(r− x)2

(
αs((r− x)2)

αs(x2)
− 1

)]

This can be generalized to ξ 6= 1 by replacing J̃v with

J̃ rc
v (r, ξ,X) = 2

∫
d2x

(2π)2

1

x2

αs(x
2)

αs((r− ξx)2)

[
S(r + (1− ξ)x, X)− S(x, X)S(r− ξx, X)

]
,

and by replacing the explicit αs factors by αs(r
2). Not a unique choice but:

ξ = 1: recovers Balitsky's prescription

Fixed coupling results unchanged
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Coordinate space formulation

Results with this formulation:
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The 'subtracted' expression gives the same results as the 'unsubtracted' one

Completely di�erent results compared to �xed coupling or αs(k⊥)

Similar situation with a simple parent dipole running coupling αs(r
2)

(reason: behaviour of FT[αs(r2)S(r)] completely di�erent from FT[S(r)])

Using instead a daughter dipole prescription αs(x
2) seems to alleviate the issue
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Conclusions

We have studied a recent proposal for the implementation of NLO factorization
in single inclusive forward hadron production

Change of the rapidity scale in the NLO terms: large e�ect numerically

Fixed coupling: positive cross sections at all transverse momenta

Running coupling: mismatch between the subtracted and unsubtracted
formulations in momentum space

Directions for future work:

Better understanding of how to deal with the running of the coupling

Add the q → g, g → q and g → g channels + fragmentation functions

Use NLO BK for the rapidity evolution of the dipole correlators

The initial condition for the BK evolution of the target must be obtained
by a �t (e.g. to HERA DIS data) also performed at NLO accuracy
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Choice of the constant C2
mom

Coordinate-space running coupling: αs(r
2) =

4π

β0 ln

(
4C2

r2Λ2
QCD

)
Momentum-space running coupling: αs(k

2
⊥) =

4π

β0 ln

(
C2
momk

2
⊥

Λ2
QCD

)

C2
mom = 103 is �xed by comparing the LO limits of the 'subtracted' (αs → 0)

and 'unsubtracted' (ξ → 1, αs → αs(k2
⊥)) expressions:
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