EXPLORING THE EFFECT OF CORRELATED CONSTITUENTS IN P+P INTERACTIONS @LHC

Alba Soto-Ontoso1,2
+ Hannah Petersen1, Javier L. Albacete2

1Frankfurt Institute for Advanced Studies, 2University of Granada
THE CART BEFORE THE HORSE

Simple geometric model to study the role of spatial correlations inside the proton

Phenomenology (eccentricities, symmetric cumulants) indicates that they do matter

However, the devil is in the details: scales interplay \(\{R_{HS}, R_C, N_{HS}, N_{COLL}, N_W\} \)
FLOW HARMONICS
Different methods share a common conclusion: non-zero flow in p+p.

Tension between ATLAS and CMS in the # of tracks dependence.

On-going analyses of LHCb and ALICE show the ridge in p+p @13 TeV.
THEORETICAL SIDE

CGC+HYDRO

[Schenke, Venugopalan’14]

P+PB

[See talk by Schenke]

IP-Glasma + round proton + MUSIC
CMS peripheral subtr.

Final state interactions also important
[Greif, Greiner, Schenke, Schlichting, Xu’17]

[Mäntysaari, Schenke, Shun, Tribedy’17]

Fluctuating proton
with internal D.O.F

Final state interactions also important
[Greif, Greiner, Schenke, Schlichting, Xu’17]
THEORETICAL SIDE

Flow harmonics

CGC

\[Q_s^2 = 1 \text{ GeV}^2 \]
\[Q_s^2 = 2 \text{ GeV}^2 \]

\[\text{P+PB} \]

MC-GLAUBER+HYDRO

[See talks by Rezaeian, Mace]

Puzzle: good description of flow harmonics in p+Pb in both paradigms.
SYMMETRIC CUMULANTS
NEW INSIGHTS OF PARTICLE AZIMUTHAL CORRELATION WITH SC IN PP, PbPb, AND Pb1Pb

SC(n, m) = \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle

NSC(n, m) = \frac{\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle}{\langle v_n^2 \rangle \langle v_m^2 \rangle}

P+P

13 TeV pp

10^-6

SC(n,m)

0.3 < p_T < 3 GeV/c

N_{trk}^{offline}

0 50 100 150

P+PB

5.02 TeV 8.16 TeV pPb

10^-6

SC(n,m)

0.3 < p_T < 3 GeV/c

N_{trk}^{offline}

0 100 200 300 400

PB+PB

5.02 TeV PbPb

10^-6

SC(n,m)

0.3 < p_T < 3 GeV/c

N_{trk}^{offline}

0 100 200 300 400

SC(2,3): initial state fluctuations. **SC(2,4):** medium properties.

Similar pattern observed across systems.

Anticorrelation seems to start around the same # tracks ~100.
So far no \(SC(n,m) \)-results in \(p+p@LHC \) energies in the literature.

Common input in all these works: geometric information of the proton.
Models @market assume **UNCORRELATED** subnucleonic components.
Set up
THE MODEL

1) Degrees of freedom: gluonic hot spots.
 - Transverse diffusion of R_{hs} with increasing energy

2) Geometry of the proton: spatial correlations in transverse space

 \[D(\vec{s}_1, \vec{s}_2, \vec{s}_3) \propto \prod_{i=1}^{3} e^{-s_i^2/R^2} \cdot \delta^{(2)}(\vec{s}_1 + \vec{s}_2 + \vec{s}_3) \times \prod_{i<j}^{3} \left(1 - e^{-\mu|\vec{s}_i - \vec{s}_j|^2/R^2}\right) \]

 \[\text{E.g: } N_{hs} = 3 \]
 \[\text{uncorrelated} \]
 \[\text{fixes C.o.M} \]
 \[\text{Repulsive correlations} \]

3) Monte-Carlo Glauber implementation with e-b-e fluctuations

 \[\mathcal{P}(s_0) \propto \mathcal{P}(N_{ch}) \]

[Similar to A. Bialas et al. '70s]

[GLISSANDO], [TGlauberMC]

Set Up
The Model: Parameters

- \((R_{hs}, R, r_c)\)-chosen to reproduce the value of proton-proton \(\sigma_{\text{tot}}\)

<table>
<thead>
<tr>
<th>Eccentricities</th>
<th>Symmetric Cumulants</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC@7TeV</td>
<td>LHC@13TeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.o.M Energy</th>
<th>(r_c=0.4 \text{ fm})</th>
<th>(r_c=0 \text{ fm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{hs})</td>
<td>0.3</td>
<td>0.39</td>
</tr>
<tr>
<td>(R)</td>
<td>0.69</td>
<td>0.65</td>
</tr>
</tbody>
</table>

In order to avoid swelling effects we consider 2 additional scenarios

- \(r_c=0, nc\): same as \(r_c=0.4 \text{ fm}\) but setting \(r_c = 0\).

- \(\langle s_1 \rangle\) fixed: same as \(r_c=0.4 \text{ fm}\) but choosing \(R\) such as

\[
\langle s_1 \rangle \equiv \int s_1 \, ds_1 \, ds_2 \, ds_3 \, D(s_1, s_2, s_3) = \langle s_1 \rangle \bigg|_{r_c=0.4 \text{ fm}}
\]
THE MODEL: PARAMETERS

\((R_{hs}, R, r_c)\)-chosen to reproduce the value of proton-proton \(\sigma_{\text{tot}}\)

<table>
<thead>
<tr>
<th>Eccentricities</th>
<th>Symmetric Cumulants</th>
<th>C.o.M Energy</th>
<th>(r_c=0.4) fm</th>
<th>(r_c=0) fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LHC@7\text{TeV})</td>
<td>(LHC@13\text{TeV})</td>
<td>(R_{hs})</td>
<td>(R)</td>
<td>(R_{hs})</td>
</tr>
<tr>
<td>0.3</td>
<td>0.69</td>
<td>0.39</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td>0.76</td>
<td>0.41</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

In order to avoid swelling effects we consider 2 additional scenarios

- \(r_c=0, nc\): same as \(r_c=0.4\) fm but setting \(r_c = 0\).

- \(\langle s_1 \rangle\) fixed: same as \(r_c=0.4\) fm but choosing \(R\) such as

\[
\langle s_1 \rangle \equiv \int s_1 ds_1 ds_2 ds_3 D(s_1, s_2, s_3) = \langle s_1 \rangle \bigg|_{r_c=0.4 \text{ fm}}
\]
SPATIAL ECCENTRICITIES
Definition

Quantitative measurement of the **spatial anisotropy of the geometry**

\[
\varepsilon_n = \sqrt{\frac{\sum_{i=1}^{N_w} r_i^n \cos(n\phi_i)}{\langle \sum_{i=1}^{N_w} r_i^n \rangle^2} + \frac{\sum_{i=1}^{N_w} r_i^n \sin(n\phi_i)}{\langle \sum_{i=1}^{N_w} r_i^n \rangle^2}}
\]

- \((r_i, \phi_i)\): wounded hot spots positions after rotation \(\Psi_{pp}\).
- \(<...>\): average weighted by entropy.

Entropy as an estimator of centrality. Division of events in centrality classes.
Spatial eccentricities

Centrality

[Albacete, Petersen, ASO’17]
Correlations reduce $\langle \varepsilon_2 \rangle$ in minimum bias and enlarge it in ultra-central collisions.

Spatial eccentricities

[Albacete, Petersen, ASO’17]
Spatial eccentricities

Triangularity

Correlations reduce $\langle \epsilon_3 \rangle$ in minimum bias and enlarge it in ultra-central collisions

$\langle \epsilon_3 \rangle$ vs Centrality

- $r_c=0$
- $r_c=0, nc$
- $r_c=0.4$
- $<s_1>$ fixed

[Albacete, Petersen, ASO’17]
SYMMETRIC CUMULANTS
NSC(2,3)

![Graph showing NSC(2,3) vs Centrality]

DISCLAIMER: data in terms of flow, model just geometry (work in progress).

New insights of particle azimuthal correlation with SC in pp, Pb, and PbPb collisions as a function of multiplicity.

[Albacete, Petersen, ASO’17]
NSC(2,3)

IN ULTRA CENTRAL COLLISIONS, NSC(2,3) <0 ONLY IN THE CORRELATED CASE

\[r_c=0 \]
\[<s_T> \text{ fixed} \]
\[r_c=0.4 \]

DISCLAIMER: data in terms of flow, model just geometry (work in progress).

Symmetric cumulants
Same qualitative behavior as NSC(2,3) but **NSC(2,4) always positive.**

NSC(2,4)

[Albacete, Petersen, ASO’17]
Interpretation

We define interaction topologies characterized by (N_w, N_{coll}) i.e.

![Diagram](image)

where $N_w \in [2,6]$ and $N_{coll} \in [1,9]$ and focus on the [0-1\%] centrality bin.

Correlations enhance the probability of having a small N_{coll} i.e.

![Diagram](image)

Symmetric cumulants
Symmetric cumulants

INTERPRETATION

CONFIGURATIONS WITH LARGE N_w AND SMALL N_{coll} RESPONSIBLE FOR MAKING NSC(2,3) <0.

Weighted by the probability of occurrence in the Monte-Carlo.

- Systematic effect for any N_w. Correlations modify the weight in the MC.
Sensitivity to R_{hs}/R_c

[Albacete, Petersen, ASO’17]

NSC(2,3)

$R_{hs} = \{0.15, 0.25, 0.32, 0.4 \}$ fm

$r_c = 0.25$

$r_c = 0.4$

$0-1\%$
SENSITIVITY TO NUMBER OF HOT SPOTS

- Constraints to the parameters when varying N_{hs}:
 - Reproduce σ_{tot} while keeping the radius of the proton fixed

![Graph showing sensitivity to number of hot spots](image)

- $N_{hs} > 2$ to have $\text{NSC}(2,3) < 0$.
- $N_{hs} = 4$: $\text{NSC}(2,3)$ compatible with being < 0 in the uncorrelated case.
The devil & the details

SCALES INTERPLAY IS DECISIVE \{R_{HS}, R_C, N_{HS}, N_{COLL}, N_W\}

Symmetric cumulants
Wrapping up
To-do list:

- Reinforce the bedrocks of the model via QCD tools
- Study the interplay between the different scales \(\{R_{hs}, r_c, N_{hs}\} \)
- Is the effect of correlations washed out by hydro? in bigger systems?