Probing saturation with dijets at LHC

Piotr Kotko

IFJ PAN

in collaboration with:

A. van Hameren, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. Stasto, M. Strikman

Motivation & Plan

Motivation

Study saturation effects in forward production of relatively hard jets (\sim 25 GeV) which can be measured at LHC.

Plan

1 Dijet production in CGC and its limiting cases

1 Leading power limit \Rightarrow TMD factorization at small *x*

- **2** Dilute limit \Rightarrow High Energy (or k_T) Factorization (HEF)
- 2 Unified approach
- 3 Numerical results for pA and UPC
- 4 Towards NLO
 - methods for multi-leg gauge invariant off-shell amplitudes
 - 2 on loop and real corrections
- Summary

Forward dijets in pA collisions within CGC

$$\begin{split} \text{Example: } qA &\to qg \text{ channel} \\ \frac{d\sigma_{qA \to 2j}}{d^3 p_1 d^3 p_2} &\sim \int \frac{d^2 x}{(2\pi)^2} \frac{d^2 x'}{(2\pi)^2} \frac{d^2 y}{(2\pi)^2} \frac{d^2 y'}{(2\pi)^2} e^{-i\vec{p}_{T1} \cdot (\vec{x}_T - \vec{x}_T')} e^{-i\vec{p}_{T2} \cdot (\vec{y}_T - \vec{y}_T')} \psi_z^* (\vec{x}_T' - \vec{y}_T') \psi_z(\vec{x}_T - \vec{y}_T)} \\ &\left\{ S_{x_g}^{(6)} (\vec{y}_T, \vec{x}_T, \vec{y}_T', \vec{x}_T') - S_{x_g}^{(4)} (\vec{y}_T, \vec{x}_T, (1-z) \vec{y}_T' + z\vec{x}_T') - S_{x_g}^{(4)} ((1-z) \vec{y}_T + z\vec{x}_T, \vec{y}_T', \vec{x}_T') \\ &- S_{x_g}^{(2)} ((1-z) \vec{y}_T + z\vec{x}_T, (1-z) \vec{y}_T' + z\vec{x}_T') \right\} \end{split}$$

 $\psi_z(\vec{x}_T)$ – quark wave function $S_{x_g}^{(i)}$ – correlators of Wilson line operators

$$S_{x_g}^{(2)}\left(\vec{y}_T, \vec{x}_T\right) = \frac{1}{N_c} \left\langle \operatorname{Tr}\left[U\left(\vec{y}_T\right) U^{\dagger}\left(\vec{y}_T'\right)\right] \right\rangle_{x_g}$$

$$S_{x_{g}}^{(4)}\left(\vec{z}_{T},\vec{y}_{T},\vec{x}_{T}\right) = \frac{1}{2C_{F}N_{c}}\left\langle \operatorname{Tr}\left[U\left(\vec{z}_{T}\right)U^{\dagger}\left(\vec{y}_{T}\right)\right]\operatorname{Tr}\left[U\left(\vec{y}_{T}\right)U^{\dagger}\left(\vec{x}_{T}\right)\right]\right\rangle_{x_{g}} - S_{x_{g}}^{(2)}\left(\vec{z}_{T},\vec{x}_{T}\right) \text{ etc.}$$

where $U(\vec{x}_T) = U(-\infty, +\infty; \vec{x}_T)$ and $\langle \dots \rangle_{x_g}$ denotes the average over color sources.

Kinematics in the hybrid approach

forward dijets with transverse momentum imbalance:

$$\left|\vec{p}_{T1}+\vec{p}_{T2}\right|=\left|\vec{k}_{T}\right|=k_{T}$$

asymmetric kinematics: $x_B \gg x_A$

Three-scale problem

- **1** hard scale P_T (of the order of the average transverse momentum of jets)
- **2** transverse momentum imbalance k_T
- **3** saturation scale $\Lambda_{\rm QCD} \ll Q_s$

Relation to (generalized) TMD factorization (1)

Leading power limit of the CGC expression

[F. Dominguez, C. Marquet, B-W. Xiao, F. Yuan Phys.Rev. D 83 (2011) 105005]

- Take the limit $k_T \sim Q_s \ll P_T$ of CGC expressions (back-to-back dijets)
- Replace the color averages by the hadronic ME: $\langle \dots \rangle_{x_{q}} \rightarrow \langle p | \dots | p \rangle / \langle p | p \rangle$

Relation to (generalized) TMD factorization (1)

Leading power limit of the CGC expression

[F. Dominguez, C. Marquet, B-W. Xiao, F. Yuan Phys.Rev. D 83 (2011) 105005]

- Take the limit $k_T \sim Q_s \ll P_T$ of CGC expressions (back-to-back dijets)
- Replace the color averages by the hadronic ME: (...)_{x_q} → (p|...|p) / (p|p)

$$\frac{d\sigma_{AB \rightarrow 2j}}{dy_1 d^2 p_{T1} dy_2 d^2 p_{T1}} \sim \sum_{a,c,d} f_{a/B}\left(x_B, P_T^2\right) \sum_i \mathcal{F}_{ag}^{(i)}\left(x_A, k_T^2\right) H_{ag \rightarrow cd}^{(i)}$$

$$\begin{split} H^{(i)} &- \text{hard on-shell factors} \\ f_{b/B}\left(x_{B}, \mu^{2}\right) &- \text{collinear PDF} \\ \mathcal{F}_{ag}^{(i)} &- \text{TMD Gluon Distributions with the operator definitions of the type} \\ &\int \frac{d\xi^{+} d^{2}\xi}{(2\pi)^{3} p_{A}^{-}} e^{ix_{A}p_{A}^{-}\xi^{+} - i\vec{k}_{T}\cdot\vec{\xi}_{T}} \langle p_{A}| \operatorname{Tr}\left\{F^{+i}\left(\xi\right)\left[\xi,0\right]_{C_{1}}F^{+i}\left(0\right)\left[0,\xi\right]_{C_{2}}\right\}|p_{A}\rangle \end{split}$$

where the Wilson lines $[\xi, 0]_{C_i}$ depend on the particular diagram it accompanies. The operator position ξ is off the light-cone.

Relation to (generalized) TMD factorization (2)

TMD Gluon distributions

[C.J. Bomhof, P.J. Mulders, F. Pijlman, Eur.Phys.J.C. 47, 147 (2006)]

$$\begin{split} \mathcal{F}_{qg}^{(1)} &\sim \langle p_{A} | \operatorname{Tr} \{ F^{+i} \left(\xi \right) \mathcal{U}^{[-]\dagger} F^{+i} \left(0 \right) \mathcal{U}^{[+]} \} | p_{A} \rangle, \\ \mathcal{F}_{qg}^{(2)} &\sim \langle p_{A} | \operatorname{Tr} \{ F^{+i} \left(\xi \right) \frac{\operatorname{Tr} \mathcal{U}^{[\Box]}}{N_{c}} \mathcal{U}^{[+]\dagger} F^{+i} \left(0 \right) \mathcal{U}^{[+]} \} | p_{A} \rangle, \\ \mathcal{F}_{gg}^{(1)} &\sim \langle p_{A} | \operatorname{Tr} \{ F^{+i} \left(\xi \right) \frac{\operatorname{Tr} \mathcal{U}^{[\Box]}}{N_{c}} \mathcal{U}^{[-]\dagger} F^{+i} \left(0 \right) \mathcal{U}^{[+]} \} | p_{A} \rangle, \\ \mathcal{F}_{gg}^{(2)} &\sim \frac{1}{N_{c}} \langle p_{A} | \operatorname{Tr} \{ F^{+i} \left(\xi \right) \mathcal{U}^{[\Box]\dagger} \} \operatorname{Tr} \{ F^{+i} \left(0 \right) \mathcal{U}^{[\Box]} \} | p_{A} \rangle, \\ \mathcal{F}_{gg}^{(3)} &\sim \langle p_{A} | \operatorname{Tr} \{ F^{+i} \left(\xi \right) \mathcal{U}^{[\Box]\dagger} F^{+i} \left(0 \right) \mathcal{U}^{[+]} \} | p_{A} \rangle, \\ \mathcal{F}_{gg}^{(4)} &\sim \langle p_{A} | \operatorname{Tr} \{ F^{+i} \left(\xi \right) \mathcal{U}^{[-]\dagger} F^{+i} \left(0 \right) \mathcal{U}^{[-]} \} | p_{A} \rangle, \\ \mathcal{F}_{gg}^{(5)} &\sim \langle p_{A} | \operatorname{Tr} \{ F^{+i} \left(\xi \right) \mathcal{U}^{[\Box]\dagger} \mathcal{U}^{[+]\dagger} F^{+i} \left(0 \right) \mathcal{U}^{[\Box]} \mathcal{U}^{[+]} \} | p_{A} \rangle, \\ \mathcal{F}_{gg}^{(6)} &\sim \langle p_{A} | \operatorname{Tr} \{ F^{+i} \left(\xi \right) \mathcal{U}^{[\Box]\dagger} \mathcal{U}^{[+]\dagger} F^{+i} \left(0 \right) \mathcal{U}^{[\Box]} \mathcal{U}^{[+]} \} | p_{A} \rangle, \end{split}$$

where the Wilson lines and Wilson loops are:

 $\mathcal{U}^{[\pm]} = U(0, \pm \infty; 0_T) U(\pm \infty, \xi^+; \xi_T), \ \mathcal{U}^{[\Box]} = \mathcal{U}^{[+]} \mathcal{U}^{[-]\dagger} = \mathcal{U}^{[+]} \mathcal{U}^{[+]\dagger}$

Relation to (generalized) TMD factorization (3)

Two most basic TMD distributions:

 $\begin{array}{l} \langle p | \operatorname{Tr} \left\{ F\left(\xi \right) \mathcal{U}^{[+]^{\dagger}} F\left(0 \right) \mathcal{U}^{[+]} \right\} | p \rangle \sim x G_{1} & \text{Weizsacker}-\text{Williams} \left(\text{WW} \right) \\ \langle p | \operatorname{Tr} \left\{ F\left(\xi \right) \mathcal{U}^{[-]^{\dagger}} F\left(0 \right) \mathcal{U}^{[+]} \right\} | p \rangle \sim x G_{2} & \text{dipole} \end{array}$

It is possible to choose a gauge to eliminate Wilson lines in xG_1 so that it has an interpretation as a gluon number density. This is not possible for xG_2 .

Only xG₂ is restricted from data (inclusive DIS)

Relation to (generalized) TMD factorization (3)

Two most basic TMD distributions:

 $\begin{array}{l} \langle p | \operatorname{Tr} \left\{ F\left(\xi \right) \mathcal{U}^{[+]^{\dagger}} F\left(0 \right) \mathcal{U}^{[+]} \right\} | p \rangle \sim x G_{1} & \text{Weizsacker}-\text{Williams} \left(\text{WW} \right) \\ \langle p | \operatorname{Tr} \left\{ F\left(\xi \right) \mathcal{U}^{[-]^{\dagger}} F\left(0 \right) \mathcal{U}^{[+]} \right\} | p \rangle \sim x G_{2} & \text{dipole} \end{array}$

It is possible to choose a gauge to eliminate Wilson lines in xG_1 so that it has an interpretation as a gluon number density. This is not possible for xG_2 .

Only xG₂ is restricted from data (inclusive DIS)

How to obtain the rest?

- Full evolution equations of the hierarchy of the operators^{1,2}
- Approximations:
 - At large N_c some TMD gluon distributions are suppressed \Rightarrow 5 left.
 - In the leading power limit we recover CGC and thus we may assume the Gaussian distribution of color sources known from CGC

\Rightarrow All TMD gluons can be calculated from xG_2

¹ I. Balitsky, A. Tarasov, JHEP 1510 (2015) 017 ² C. Marquet, E. Petreska, C. Roiesnel, JHEP 1610 (2016) 065

Relation to k_T -factorization

Dilute limit of the CGC expression $Q_s \ll k_T \sim P_T$

[E. Iancu and J. Laidet, Nucl. Phys. A 916 (2013) 48] [P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, JHEP 1509 (2015) 106]

$$d\sigma_{AB\rightarrow 2j} = \sum_{b} \int dx_A dx_B \int dk_T^2 f_{b/B} \left(x_B, \mu^2 \right) \mathcal{F}_{g^*/A} \left(x_A, k_T^2, \mu^2 \right) d\hat{\sigma}_{g^*b\rightarrow 2j} \left(x_A, x_B, k_T^2, \mu^2 \right)$$

 $\mathcal{F}(x_A, k_T^2, \mu^2)$ – Unintegrated Gluon Distribution (UGD) with BFKL evolution or similar $f_{b/B}(x_B, \mu^2)$ – collinear PDF $\hat{\sigma}_{g^*b \rightarrow 2j}$ – partonic cross section, computed with off-shell incoming gluon in a gauge invariant way (the Lipatov vertexes).

Meinly linear regime.

The form of the High Energy (or k_T) Factorization (HEF).

[L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys.Rept. 100 (1983) 1-150]
 [J.C. Collins, R.K. Ellis, Nucl.Phys. B360 (1991) 3-30]
 [S. Catani, M. Ciafaloni, F. Hautmann, Nucl.Phys. B366 (1991) 135-188]

Formula for $P_T \gg Q_s$, any k_T

[P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, JHEP 1509 (2015) 106]

Formula for $P_T \gg Q_s$, any k_T

[P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, JHEP 1509 (2015) 106]

$$\frac{d\sigma_{AB\rightarrow 2j+X}}{dy_1 d^2 p_{T1} dy_2 d^2 p_{T2}} \sim \sum_{a,c,d} f_{a/B} \left(x_B, \mu^2 \right) \sum_{i=1,2} \Phi_{ag\rightarrow cd}^{(i)} \left(x_A, k_T^2, \mu^2 \right) \mathcal{K}_{ag\rightarrow cd}^{(i)} \left(k_T^2, \mu^2 \right)$$

 $\Phi_{ag \to cd}^{(i)}$ – small-*x* TMD Gluon Distributions, linear combinations of $\mathcal{F}_{ag}^{(i)}$ $K^{(i)}$ – hard factors calculated from gauge invariant off-shell amplitudes

Formula for $P_T \gg Q_s$, any k_T

[P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, JHEP 1509 (2015) 106]

$$\frac{d\sigma_{AB\to 2j+X}}{dy_1 d^2 p_{T1} dy_2 d^2 p_{T2}} \sim \sum_{a,c,d} f_{a/B} \left(x_B, \mu^2 \right) \sum_{i=1,2} \Phi_{ag\to cd}^{(i)} \left(x_A, k_T^2, \mu^2 \right) K_{ag\to cd}^{(i)} \left(k_T^2, \mu^2 \right)$$

 $\Phi_{ag \rightarrow cd}^{(i)}$ – small-x TMD Gluon Distributions, linear combinations of $\mathcal{F}_{ag}^{(i)}$ $\mathcal{K}^{(i)}$ – hard factors calculated from gauge invariant off-shell amplitudes

The formula contains the two limiting cases:

- **1** $Q_s \ll k_T \sim P_T$ High Energy Factorization (HEF)/ k_T -factorization
 - All $\Phi_{aq \rightarrow cd}^{(i)}$ become equal to xG_2 .
 - Off-shell factors combine to appropriate Lipatov vertex.

2 $k_T \sim Q_s \ll P_T$ – leading power limit of CGC

- Off-shell factors become on-shell
- TMD gluon distributions can be identified with color averages in CGC

Comments

Factorized form

- · clear distinction of what is a hard process and what is a gluon distribution
- suitable for attacking the NLO

Comments

Factorized form

- · clear distinction of what is a hard process and what is a gluon distribution
- suitable for attacking the NLO
- 2 The approach is suitable for Monte Carlo implementation.
 - · complete phase space and momentum conservation
 - two existing independent implementations

Comments

Factorized form

- · clear distinction of what is a hard process and what is a gluon distribution
- suitable for attacking the NLO
- 2 The approach is suitable for Monte Carlo implementation.
 - · complete phase space and momentum conservation
 - two existing independent implementations
- **3** At phenomenological level, the k_T dependence mimics initial state parton shower¹.

Comments

Factorized form

- · clear distinction of what is a hard process and what is a gluon distribution
- suitable for attacking the NLO
- 2 The approach is suitable for Monte Carlo implementation.
 - · complete phase space and momentum conservation
 - two existing independent implementations
- **3** At phenomenological level, the k_T dependence mimics initial state parton shower¹.
- 4 In the region $P_T \gg k_T \sim Q_s$ one should resum the Sudakov logs.
 - formally this should be done by considering a complete evolution equation for TMD gluons.
 - however, at lowest order the Sudakov form factor has a simple probabilistic interpretation.
 - this can be used to model the resummation at the Monte Carlo level².

¹ see eg. M. Bury, M. Deak, K. Kutak, S. Sapeta, Phys.Lett. B760 (2016) 594-601
 ² A. van Hameren, P.K., K. Kutak, S. Sapeta, Phys.Lett. B737 (2014) 335-340

Phenomenology (1)

Small x TMD gluon distributions from data

[A. van Hameren, P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, JHEP 1612 (2016) 034]

At karge N_c the non-vanishing $\mathcal{F}^{(i)}$ -s can be calculated in the gaussian approximation from the dipole gluon xG_2 .

 xG_2 was fitted to HERA data by Kutak and Sapeta¹ (KS) using nonlinear extension² of Kwiecinski-Martin-Stasto³ (KMS) evolution equation.

All gluons merge for large k_T (except $\mathcal{F}_{gg}^{(2)}$ which vanishes) \Rightarrow correct HEF limit.

Phenomenology (2)

The Weizsacker-Williams gluon distribution from data

[P.K., K. Kutak, S. Sapeta, A. Stasto, M. Strikman, Eur. Phys. J. C77 (2017) no.5, 353]

Phenomenology (3)

Nuclear modification ratio for azimuthal decorrelations in $pA \rightarrow 2j$

[A. van Hameren, P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, JHEP 1612 (2016) 034]

- CM energy: $\sqrt{S} = 8.16 \,\mathrm{TeV}$
- require two jets with $(\Delta \phi)^2 + (\Delta \eta)^2 > R^2, R = 0.5$
- transverse momenta cuts: $p_{T1} > p_{T2} > 20 \text{ GeV}$
- rapidity cuts: $3.5 < y_1, y_2 < 4.5$

Phenomenology (4)

Nuclear modification ratio for azimuthal decorrelations in Ultra-Pheripheral Collisions (UPC) $AA(pA) \rightarrow 2j$

- CM energy: $\sqrt{S} = 5.1 \text{ TeV}$
- · require two jets
- transverse momenta cuts: $p_{T1} > p_{T2} > 6 \div 10 \text{ GeV}$
- rapidity cuts: 0 < *y*₁, *y*₂ < 5

[P.K., K. Kutak, S. Sapeta, A. Stasto, M. Strikman, Eur. Phys. J. C77 (2017) no.5, 353]

Direct component probes the WW gluons directly

Tree-level multi-leg off-shell gauge invariant amplitudes

Several methods available:

•	Lipatov's effective action	[E. Antonov, L. Lipatov, E. Kuraev, I. Cherednikov, Nucl.Phys. B721 (2005) 111-135]
•	Slavnov-Taylor identities	[A. van Hameren, P.K., K. Kutak, JHEP 1212 (2012) 029]
•	Extraction from on-shell proc	@SS [A. van Hameren, P.K., K. Kutak, JHEP 1301 (2013) 078]

- ME of Wilson lines
 [P.K., JHEP 1407 (2014) 128]
- Britto-Cachazo-Feng-Witten (BCFW)

[A. van Hameren, JHEP 1407 (2014) 138]

Tree-level multi-leg off-shell gauge invariant amplitudes

Several methods available:

 Lipate 	ov's effective action	E. Antonov, L. Lipatov, E. Kuraev, I. Cherednikov, Nucl.Phys. B721 (2005) 111-135]
 Slavn 	ov-Taylor identities	[A. van Hameren, P.K., K. Kutak, JHEP 1212 (2012) 029]
• Extra	ction from on-shell proce	S [A. van Hameren, P.K., K. Kutak, JHEP 1301 (2013) 078]
• ME o	f Wilson lines	[P.K., JHEP 1407 (2014) 128]

Britto-Cachazo-Feng-Witten (BCFW)

[A. van Hameren, JHEP 1407 (2014) 138]

Example for $g^*g \rightarrow g \dots g$ using the Wilson lines

For an off-shell gluon with momentum $k = xp + k_T$ take the following diagrams:

where the Wilson line slope is p and the momentum k. (arbitrary gauge)

Example: maximally helicity violating (MHV) amplitudes

[A. van Hameren, PK, K. Kutak, JHEP 1212 (2012) 029]

Example: maximally helicity violating (MHV) amplitudes

[A. van Hameren, PK, K. Kutak, JHEP 1212 (2012) 029]

Color decomposition of amplitudes

$$\mathcal{M}^{a_1\dots a_N}\left(\varepsilon_1^{\lambda_1},\dots,\varepsilon_N^{\lambda_N}\right) = \sum_{\sigma\in S_{N-1}} \operatorname{Tr}\left(t^{a_1}t^{a_{\sigma_2}}\dots t^{a_{\sigma_N}}\right) \,\mathcal{M}\left(1^{\lambda_1},\sigma_2^{\lambda_{\sigma_2}}\dots,\sigma_N^{\lambda_{\sigma_N}}\right)$$

 a_i - color indices, $\varepsilon_i^{\lambda_i}$ - polarization vectors with helicity λ_i , S_{N-1} - set of noncyclic permutations.

Example: maximally helicity violating (MHV) amplitudes

[A. van Hameren, PK, K. Kutak, JHEP 1212 (2012) 029]

Color decomposition of amplitudes

$$\mathcal{M}^{a_1\dots a_N}\left(\varepsilon_1^{\lambda_1},\dots,\varepsilon_N^{\lambda_N}\right) = \sum_{\sigma\in S_{N-1}} \operatorname{Tr}\left(t^{a_1}t^{a_{\sigma_2}}\dots t^{a_{\sigma_N}}\right) \,\mathcal{M}\left(1^{\lambda_1},\sigma_2^{\lambda_{\sigma^2}}\dots,\sigma_N^{\lambda_{\sigma_N}}\right)$$

 a_i - color indices, $\varepsilon_i^{\lambda_i}$ - polarization vectors with helicity λ_i , S_{N-1} - set of noncyclic permutations.

The color-ordered off-shell gauge invariant MHV amplitudes read:

$$\mathcal{M}_{g^*g o g_{\dots}g}\left(1^*, 2^-, 3^+, \dots, n^+\right) \sim \ rac{\langle 1^*2 \rangle^4}{\langle 1^*2 \rangle \langle 23 \rangle \langle 34 \rangle \dots \langle n-1n \rangle \langle n1^*
angle}$$

where $\langle ij \rangle = \langle k_i - |k_j + \rangle$ with spinors defined as $|k_i \pm \rangle = \frac{1}{2} (1 \pm \gamma_5) u(k_i)$. Spinor products for off-shell states involve only longitudinal component of the off-shell momentum $\langle 1^*i \rangle = \langle p_1 i \rangle$, where $k_1 = p_1 + k_{T1}$, $k_1^2 \neq 0$, $p_1^2 = 0$.

Example: maximally helicity violating (MHV) amplitudes

[A. van Hameren, PK, K. Kutak, JHEP 1212 (2012) 029]

Color decomposition of amplitudes

$$\mathcal{M}^{a_1\dots a_N}\left(\varepsilon_1^{\lambda_1},\dots,\varepsilon_N^{\lambda_N}\right) = \sum_{\sigma\in S_{N-1}} \operatorname{Tr}\left(t^{a_1}t^{a_{\sigma_2}}\dots t^{a_{\sigma_N}}\right) \mathcal{M}\left(1^{\lambda_1},\sigma_2^{\lambda_{\sigma_2}}\dots,\sigma_N^{\lambda_{\sigma_N}}\right)$$

 a_i - color indices, $\varepsilon_i^{\lambda_i}$ - polarization vectors with helicity λ_i , S_{N-1} - set of noncyclic permutations.

The color-ordered off-shell gauge invariant MHV amplitudes read:

$$\mathcal{M}_{g^*g o g_{\dots}g} \left(1^*, 2^-, 3^+, \dots, n^+\right) \sim \ rac{\langle 1^*2 \rangle^4}{\langle 1^*2 \rangle \langle 23 \rangle \langle 34 \rangle \dots \langle n-1n \rangle \langle n1^*
angle}$$

where $\langle ij \rangle = \langle k_i - |k_j + \rangle$ with spinors defined as $|k_i \pm \rangle = \frac{1}{2} (1 \pm \gamma_5) u(k_i)$. Spinor products for off-shell states involve only longitudinal component of the off-shell momentum $\langle 1^*i \rangle = \langle p_1 i \rangle$, where $k_1 = p_1 + k_{T1}$, $k_1^2 \neq 0$, $p_1^2 = 0$.

Why the MHV form?

A general feature of certain off-shell gauge invariant currents, not related to high energy amplitudes. [P.K., A. Stasto, JHEP 1709 (2017) 047]

Presence of non-light like Wilson lines in the light-front MHV Lagrangian for the Cachazo-Svrcek-Witten (CSW) method of calculating amplitudes.

Eikonization

Off-shell gauge invariant amplitudes can be extracted from an auxiliary (unphysical) on-shell process

When the quark becomes eikonal, we get the desire result. The whole procedure can be automatized to get any amplitude

[A. van Hameren, P.K., K. Kutak, JHEP 1301 (2013) 078]

Eikonization

Off-shell gauge invariant amplitudes can be extracted from an auxiliary (unphysical) on-shell process

When the quark becomes eikonal, we get the desire result. The whole procedure can be automatized to get any amplitude

[A. van Hameren, P.K., K. Kutak, JHEP 1301 (2013) 078]

Loop corrections

For on-shell amplitudes the loop corrections can be calculated automatically for any process.

The idea is to use the eikonization at the loop level.

The main issues are related to the strict eikonal limit and finding the coefficients of the master integrals (boxes, triangles, bubbles), but can be dealt with.

Real corrections

Work in (slow) progress...

The idea is to treat the incoming off-shell gluon as a massive parton and use elements of the Catani-Seymour dipole subtraction method extended for incoming massive partons. [PK., W. Slominski, Phys.Rev. D86 (2012) 094008]

Real corrections

Work in (slow) progress...

The idea is to treat the incoming off-shell gluon as a massive parton and use elements of the Catani-Seymour dipole subtraction method extended for incoming massive partons. [PK., W. Slominski, Phys.Rev. D86 (2012) 094008]

Warning

Our concern here was NLO correction to an arbitrary hard off-shell process.

The issue of factorization (or factorization breaking) is a separate story.

Summary

- I reviewed selected approaches to forward production of hard dijet in the context of saturation.
- 2 Numerical results in a model which is an approximation to CGC when the dijet system is hard:
 - at LHC, forward dijet production in *pA* shows about 40% of suppression due to saturation with jets *p_T* > 20 GeV.
 - inn forward dijets in UPC at LHC, the suppression is at most around 20% with jets $p_T > 6 \text{ GeV}$.
- Current status of efficient methods for calculating any off-shell amplitudes, including some recent progress at NLO

BACKUP

Improved small x TMD factorization (ITMD)

Factorization formula for forward dijets in pA ($\mu = \bar{p}_T \gg Q_s$)

[P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, JHEP 1509 (2015) 106]

$$\frac{d\sigma_{AB \to 2j+X}}{dy_1 d^2 p_{T1} dy_2 d^2 p_{T2}} \sim \sum_{a,c,d} f_{a/B} \left(x_B, \mu^2 \right) \sum_{i=1,2} \Phi^{(i)}_{ag \to cd} \left(x_A, k_T^2, \mu^2 \right) \mathcal{K}^{(i)}_{ag \to cd} \left(k_T^2, \mu^2 \right)$$

TMD gluon distributions:

$$\begin{split} \Phi_{qg \to gq}^{(1)} &= \mathcal{F}_{qg}^{(1)}, \ \Phi_{qg \to gq}^{(2)} = \frac{1}{N_c^2 - 1} \left(N_c^2 \mathcal{F}_{qg}^{(2)} - \mathcal{F}_{qg}^{(1)} \right), \\ \Phi_{gg \to q\bar{q}}^{(1)} &= \frac{1}{N_c^2 - 1} \left(N_c^2 \mathcal{F}_{gg}^{(1)} - \mathcal{F}_{gg}^{(3)} \right), \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{2N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(1)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^{(4)} + \mathcal{F}_{gg}^{(5)} + N_c^2 \mathcal{F}_{gg}^{(6)} \right), \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(2)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^{(4)} + \mathcal{F}_{gg}^{(5)} + N_c^2 \mathcal{F}_{gg}^{(6)} \right), \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(2)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^{(4)} + \mathcal{F}_{gg}^{(5)} + N_c^2 \mathcal{F}_{gg}^{(6)} \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(2)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^{(4)} + \mathcal{F}_{gg}^{(5)} + N_c^2 \mathcal{F}_{gg}^{(6)} \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(2)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^{(4)} + \mathcal{F}_{gg}^{(5)} + N_c^2 \mathcal{F}_{gg}^{(6)} \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(2)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^{(5)} + \mathcal{F}_{gg}^2 + \mathcal{F}_{gg}^{(6)} \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(2)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^{(5)} + \mathcal{F}_{gg}^2 + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(2)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^{(5)} + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(1)} - 2\mathcal{F}_{gg}^{(3)} + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(1)} - 2\mathcal{F}_{gg}^{(1)} + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(1)} + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^{(1)} + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^2 + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^2 + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^2 + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^2 + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^{(1)} &= \frac{1}{N_c^2} \left(N_c^2 \mathcal{F}_{gg}^2 + \mathcal{F}_{gg}^2 \right) \\ \Phi_{gg \to gg}^2 + \mathcal{F}_{gg}^2 \right)$$

$$\mathcal{F}_{gg}^{(1)} \sim \langle p_{A} | \operatorname{Tr} \{ F^{+i}(\xi) \mathcal{U}^{[-]\dagger} F^{+i}(0) \mathcal{U}^{[+]} | p_{A} \rangle, \quad \mathcal{F}_{gg}^{(2)} \sim \langle p_{A} | \operatorname{Tr} \{ F^{+i}(\xi) \frac{\operatorname{Tr} \mathcal{U}^{[c]}}{N_{c}} \mathcal{U}^{[+]\dagger} F^{+i}(0) \mathcal{U}^{[+]} | p_{A} \rangle,$$

$$\mathcal{F}_{gg}^{(1)} \sim \langle p_{A} | \operatorname{Tr} \{ F^{+i}(\xi) \frac{\operatorname{Tr} \mathcal{U}^{[c]}}{N_{c}} \mathcal{U}^{[-]\dagger} F^{+i}(0) \mathcal{U}^{[+]} \} | p_{A} \rangle, \quad \mathcal{F}_{gg}^{(2)} \sim \frac{1}{N_{c}} \langle p_{A} | \operatorname{Tr} \{ F^{+i}(\xi) \mathcal{U}^{[c]\dagger} \} \operatorname{Tr} \{ F^{+i}(0) \mathcal{U}^{[c]} \} | p_{A} \rangle,$$

$$\mathcal{F}_{gg}^{(3)} \sim \langle p_{A} | \operatorname{Tr} \{ F^{+i}(\xi) \mathcal{U}^{[+]\dagger} F^{+i}(0) \mathcal{U}^{[+]} \} | p_{A} \rangle, \quad \mathcal{F}_{gg}^{(4)} \sim \langle p_{A} | \operatorname{Tr} \{ F^{+i}(\xi) \mathcal{U}^{[-]\dagger} F^{+i}(0) \mathcal{U}^{[-]} \} | p_{A} \rangle,$$

$$\mathcal{F}_{gg}^{(5)} \sim \langle p_{A} | \operatorname{Tr} \{ F^{+i}(\xi) \mathcal{U}^{[c]\dagger} \mathcal{U}^{[+]\dagger} F^{+i}(0) \mathcal{U}^{[c]} \mathcal{U}^{[+]} \} | p_{A} \rangle, \quad \mathcal{F}_{gg}^{(6)} \sim \langle p_{A} | \operatorname{Tr} \{ F^{+i}(\xi) \mathcal{U}^{[+]\dagger} F^{+i}(0) \mathcal{U}^{[+]} \} \left(\frac{\operatorname{Tr} \mathcal{U}^{[c]}}{N_{c}} \right)^{2} | p_{A} \rangle.$$

Improved small x TMD factorization (ITMD)

Factorization formula for forward dijets in pA ($\mu = \bar{p}_T \gg Q_s$)

[P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, JHEP 1509 (2015) 106]

$$\frac{d\sigma_{AB\rightarrow 2j+X}}{dy_1 d^2 \rho_{T1} dy_2 d^2 \rho_{T2}} \sim \sum_{a,c,d} f_{a/B}\left(x_B, \mu^2\right) \sum_{i=1,2} \Phi_{ag\rightarrow cd}^{(i)}\left(x_A, k_T^2, \mu^2\right) \mathcal{K}_{ag\rightarrow cd}^{(i)}\left(k_T^2, \mu^2\right)$$

Off-shell hard factors:

$$\begin{split} \mathcal{K}_{qg \to gq}^{(1)} &= -\frac{\overline{u}\left(\overline{s}^2 + \overline{u}^2\right)}{2\overline{t}\widehat{t}\widehat{s}} \left(1 + \frac{\overline{s}\widehat{s} - \overline{t}\widehat{t}}{N_c^2 \ \overline{u}\widehat{u}}\right), \\ \mathcal{K}_{qg \to qq}^{(2)} &= -\frac{C_F}{N_c} \ \frac{\overline{s}\left(\overline{s}^2 + \overline{u}^2\right)}{\overline{t}\widehat{t}\widehat{u}}, \\ \mathcal{K}_{gg \to q\overline{q}}^{(1)} &= \frac{1}{2N_c} \ \frac{\left(\overline{t}^2 + \overline{u}^2\right)\left(\overline{u}\widehat{u} + \overline{t}\widehat{t} - \overline{s}\widehat{s}\right)}{\overline{s}\widehat{s}\widehat{t}\widehat{u}}, \\ \mathcal{K}_{gg \to q\overline{q}}^{(2)} &= \frac{1}{4N_c^2 C_F} \ \frac{\left(\overline{t}^2 + \overline{u}^2\right)\left(\overline{u}\widehat{u} + \overline{t}\widehat{t} - \overline{s}\widehat{s}\right)}{\overline{s}\widehat{s}\widehat{t}\widehat{u}}, \\ \mathcal{K}_{gg \to q\overline{q}}^{(1)} &= \frac{N_c}{C_F} \ \frac{\left(\overline{s}^4 + \overline{t}^4 + \overline{u}^4\right)\left(\overline{u}\widehat{u} + \overline{t}\widehat{t}\right)}{\overline{t}\widehat{t}\widehat{u}\widehat{u}\widehat{s}\widehat{s}}, \\ \mathcal{K}_{gg \to gg}^{(1)} &= \frac{N_c}{C_F} \ \frac{\left(\overline{s}^4 + \overline{t}^4 + \overline{u}^4\right)\left(\overline{u}\widehat{u} + \overline{t}\widehat{t}\right)}{\overline{t}\widehat{t}\widehat{u}\widehat{u}\widehat{s}\widehat{s}}, \\ \mathcal{K}_{gg \to gg}^{(1)} &= \frac{N_c}{C_F} \ \frac{\left(\overline{s}^4 + \overline{t}^4 + \overline{u}^4\right)\left(\overline{u}\widehat{u} + \overline{t}\widehat{t}\right)}{\overline{t}\widehat{t}\widehat{u}\widehat{u}\widehat{s}\widehat{s}} \end{split}$$

 $\hat{s}, \hat{t}, \hat{u}$ – ordinary Mandelstam variables, $\hat{s} + \hat{t} + \hat{u} = k_T^2$. $\overline{s}, \overline{t}, \overline{u}$ off-shell momentum is replaced by its longitudinal component of off-shell momentum, $\overline{s} + \overline{u} + \overline{t} = 0$

Gaussian approximation for TMD gluons

In the large N_c limit all UGDs can be expressed by only two fundamental UGDs:

$$\begin{aligned} \mathcal{F}_{qg}^{(2)}\left(x,k_{T}^{2}\right) &\sim \int \frac{d^{2}q_{T}}{q_{T}^{2}} \mathcal{F}_{gg}^{(3)}\left(x,q_{T}^{2}\right) \mathcal{F}_{qg}^{(1)}\left(x,|k_{T}-q_{T}|^{2}\right) \\ \mathcal{F}_{gg}^{(1)}\left(x,k_{T}^{2}\right) &\sim \int \frac{d^{2}q_{T}}{q_{T}^{2}} \mathcal{F}_{qg}^{(1)}\left(x,q_{T}^{2}\right) \mathcal{F}_{qg}^{(1)}\left(x,|k_{T}-q_{T}|^{2}\right) \\ \mathcal{F}_{gg}^{(2)}\left(x,k_{T}^{2}\right) &\sim \int \frac{d^{2}q_{T}}{q_{T}^{2}} \left(q_{T}-k_{T}\right) \cdot q_{T} \mathcal{F}_{qg}^{(1)}\left(x,q_{T}^{2}\right) \mathcal{F}_{qg}^{(1)}\left(x,|k_{T}-q_{T}|^{2}\right) \\ \mathcal{F}_{gg}^{(1)}\left(x,k_{T}^{2}\right) &\sim \int \frac{d^{2}q_{T}d^{2}q_{T}'}{q_{T}^{2}} \mathcal{F}_{gg}^{(3)}\left(x,q_{T}^{2}\right) \mathcal{F}_{qg}^{(1)}\left(x,q_{T}'\right) \mathcal{F}_{qg}^{(1)}\left(x,|k_{T}-q_{T}-q_{T}'|^{2}\right) \end{aligned}$$

- **1** dipole: $\mathcal{F}_{qg}^{(1)} = xG^{(2)} \sim \langle p_A | \operatorname{Tr} \{F(\xi) \mathcal{U}^{[-]\dagger}F(0) \mathcal{U}^{[+]} \} | p_A \rangle$ appears directly in: inclusive DIS, inclusive jet in *pA*
- **2** Weizsacker-Williams (WW): $\mathcal{F}_{gg}^{(3)} = xG^{(1)} \sim \langle p_A | \operatorname{Tr} \left\{ F(\xi) \mathcal{U}^{[+]\dagger} F(0) \mathcal{U}^{[+]} \right\} | p_A \rangle$ appears directly in dijets in DIS

The WW gluon distribution from data

Relation between xG_1 and xG_2 in gaussian approximation

$$\nabla_{k_{T}}^{2}G^{(1)}(x,k_{T}) = \frac{4\pi^{2}}{N_{c}S_{\perp}} \int \frac{d^{2}q_{T}}{q_{T}^{2}} \frac{\alpha_{s}}{(k_{T}-q_{T})^{2}} G^{(2)}(x,q_{T}) G^{(2)}(x,|k_{T}-q_{T}|)$$

Realistic evolution equation for xG₂

Nonlinear extension of the Kwiecinski-Martin-Stasto (KMS) evolution equation (below $xG_2 \equiv \mathcal{F}$): [J. Kwiecinski, Alan D. Martin, AM. Stasto, Phys. Rev. D56 (1997) 3991-4006]

$$\begin{split} \mathcal{F}\left(x,k_{T}^{2}\right) &= \mathcal{F}_{0}\left(x,k_{T}^{2}\right) + \frac{\alpha_{s}N_{c}}{\pi} \int_{x}^{1} \frac{dz}{z} \int_{k_{T}^{2}0}^{\infty} \frac{dq_{T}^{2}}{q_{T}^{2}} \left\{ \frac{q_{T}^{2}\mathcal{F}\left(\frac{x}{z},q_{T}^{2}\right)\theta\left(\frac{k_{T}^{2}}{z} - q_{T}^{2}\right) - k_{T}^{2}\mathcal{F}\left(\frac{x}{z},k_{T}^{2}\right)}{\left|q_{T}^{2} - k_{T}^{2}\right|} + \frac{k_{T}^{2}\mathcal{F}\left(\frac{x}{z},k_{T}^{2}\right)}{\sqrt{4q_{T}^{4} + k_{T}^{4}}} \right\} \\ &+ \frac{\alpha_{s}}{2\pi k_{T}^{2}} \int_{x}^{1} dz \left\{ \left(P_{gg}\left(z\right) - \frac{2N_{c}}{z}\right) \int_{k_{T}^{2}0}^{k_{T}^{2}} dq_{T}^{2}\mathcal{F}\left(\frac{x}{z},q_{T}^{2}\right) + zP_{gq}\left(z\right)\Sigma\left(\frac{x}{z},k_{T}^{2}\right) \right\} \\ &- \frac{2\alpha_{s}^{2}}{R^{2}} \left\{ \left[\int_{k_{T}^{2}}^{\infty} \frac{dq_{T}^{2}}{q_{T}^{2}}\mathcal{F}\left(x,q_{T}^{2}\right) \right]^{2} + \mathcal{F}\left(x,k_{T}^{2}\right) \int_{k_{T}^{2}}^{\infty} \frac{dq_{T}^{2}}{q_{T}^{2}} \ln\left(\frac{q_{T}^{2}}{k_{T}^{2}}\right)\mathcal{F}\left(x,q_{T}^{2}\right) \right\} \end{split}$$

This equation was fitted to HERA data for proton by Kutak-Sapeta (KS).

[K. Kutak, S. Sapeta, Phys. Rev. D 86 (2012) 094043] For nucleus $R_A = RA^{1/3} / \sqrt{d}$ is used so the nonlinear term is enhanced by $dA^{1/3}$.

High energy factorization (HEF): $k_T \sim P_T \gg Q_s$

Comparison with data

central-forward dijet production

[A. van Hameren, PK, K. Kutak, S. Sapeta, Phys.Lett. B737 (2014) 335-340]
 [A. van Hameren, PK, K. Kutak, Phys.Rev. D92 (2015) 054007]

• forward Z₀+jet production

23

Results for dijet production in pPb at LHC

Nuclear modification ratio for azimuthal decorrelations

[A. van Hameren, P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, JHEP 1612 (2016) 034]

Results for dijet production in pPb at LHC

Nuclear modification ration for jet p_T spectra

[A. van Hameren, P.K., K. Kutak, C. Marquet, E. Petreska, S. Sapeta, JHEP 1612 (2016) 034]

ITMD for dijets in γA

Factorization formula

[P.K., K. Kutak, S. Sapeta, A. Stasto, M. Strikman, Eur. Phys. J. C77 (2017) no.5, 353]

$$\frac{d\sigma_{\gamma A \to 2j+X}}{dy_1 d^2 p_{T1} dy_2 d^2 p_{T2}} \sim x_A G_1\left(x_A, k_T^2, \mu^2\right) \otimes \mathcal{K}_{\gamma g^* \to q\bar{q}}\left(k_T, \mu^2\right)$$

 xG_1 – the Weizsacker-Williams gluon distribution $K_{\gamma g^* \to q\overline{q}}$ – off-shell gauge invariant hard factor for the $\gamma g^* \to q\overline{q}$ process

- Similar to inclusive DIS, but probes xG₁ instead of xG₂.
- For UPC one needs to convolute this with the photon flux from nucleus.
 Issue: the photon flux dies out very fast above x_γ ~ 0.03, so there is not much phase space for the asymmetric kinematics x_A ≪ x_γ which guarantees that xG₁ is probed at small x, unless we use jets with rather small p_T.

CM energy: 5.1 TeV	rapidity: $0 < y_1, y_2 < 5$
transverse momenta: $p_{T1} > p_{T2} > p_{T0}$, $p_{T0} = 6 \div 25 \text{GeV}$	jet algorithm: $R = 0.5$

CM energy: 5.1 TeV	rapidity: $0 < y_1, y_2 < 5$
transverse momenta: $p_{T1} > p_{T2} > p_{T0}$, $p_{T0} = 6 \div 25 \text{GeV}$	jet algorithm: $R = 0.5$

CM energy: 5.1 TeV	rapidity: $0 < y_1, y_2 < 5$
transverse momenta: $p_{T1} > p_{T2} > p_{T0}$, $p_{T0} = 6 \div 25 \text{GeV}$	jet algorithm: $R = 0.5$

CM energy: 5.1 TeV	rapidity: $0 < y_1, y_2 < 5$
transverse momenta: $p_{T1} > p_{T2} > p_{T0}$, $p_{T0} = 6 \div 25 \text{GeV}$	jet algorithm: $R = 0.5$

Nuclear modification ratio in UPC

Nuclear modification factor $R_{\gamma A}$

For UPC collisions we define the nuclear modification ratio as

$$\mathsf{R}_{\gamma \mathsf{A}} = rac{d\sigma^{\mathrm{UPC}}_{\mathsf{A}\mathsf{A}}}{\mathsf{A}d\sigma^{\mathrm{UPC}}_{\mathsf{A}\mathsf{p}}}$$

where A = Pb and the $d\sigma_{Ao}^{UPC}$ is with jets going in the nucleus direction.

Nuclear modification ration for azimuthal decorrelations

[P.K., K. Kutak, S. Sapeta, A. Stasto, M. Strikman, Eur. Phys. J. C77 (2017) no.5, 353]

Nuclear modification ratio for jet p_T spectra

[P.K., K. Kutak, S. Sapeta, A. Stasto, M. Strikman, Eur. Phys. J. C77 (2017) no.5, 353]

