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Introduction & Motivation

Non-central heavy-ion collisions create fireballs with large global
angular momenta.

This may generate a spin polarization of the hot and dense matter
in a way similar to the Einstein-de Haas and Barnett effects.

Much effort has recently been invested in studies of polarization
and spin dynamics of particles produced in relativistic heavy ion
collisions from both experimental and theoretical point of view;
see earlier talks by Rainer, Takafumi and Francesco.

L. Adamczyk et al. (STAR), Global Λ hyperon polarization in
nuclear collisions: evidence for the most vortical fluid , Nature
548, 62 (2017).
www.sciencenews.org/article/smashing-gold-ions-creates-most-
swirly-fluid-ever (Record-making vorticity found in QGP).

Motivation to develop hydrodynamic framework with angular
momentum conservation taken into account.
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Energy-momentum tensor and angular momentum:
system of scalar particles

For a system of scalar particles, the conservation of
energy-momentum and angular momentum reads

∂µTµν = 0, ∂λJλ,µν = 0

The total angular momentum can be written as

Jλ,µν = Lλ,µν = xµTλν
− xνTλµ

where L represents the orbital angular momentum.

∂λJλ,µν = Tµν
− Tνµ

⇒ for a symmetric energy-momentum
tensor, the orbital angular momentum is automatically conserved.

Therefore angular momentum conservation leads to no new
constraints for evolution.
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Energy-momentum tensor and angular momentum:
system of particles with intrinsic spin

For a system of particles with intrinsic spin, we must consider
angular momentum conservation along with energy and
momentum conservation.

∂µTµν = 0, ∂λJλ,µν = 0

The total angular momentum can be written as

Jλ,µν = Lλ,µν + Sλ,µν

where L represents the orbital part and S represents the intrinsic
spin part.

For a symmetric energy-momentum tensor, the orbital angular
momentum is automatically conserved and therefore one has to
explicitly consider the conservation of spin

∂λSλ,µν = 0

Amaresh Jaiswal Initial Stages 2017 4



Local distribution functions

Phase-space distribution functions for spin-1/2 particles.

Generalized to two by two spin density matrices for each value of
the x and p. F. Becattini et al., Annals Phys. 338 (2013) 32

f+
rs (x ,p) =

1
2m

ūr (p)X+us(p), f−rs(x ,p) = −
1

2m
v̄s(p)X−vr (p)

Here

X± = exp
[
−βµ(x)pµ ± ξ(x)

]
M± , M± = exp

[
±

1
2
ωµν(x)Σ̂µν

]
Notations:

βµ = uµ/T , ξ = µ/T , Σ̂µν = (i/4)[γµ, γν],

where, T : temperature, µ: chemical potential, uµ: fluid four
velocity, ωµν: the spin tensor, and Σ̂µν: the spin operator.
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Spin/polarization tensor

Express antisymmetric ωµν as

ωµν ≡ kµuν−kνuµ+εµνβγuβωγ ⇒ kµ = ωµνuν, ωµ =
1
2
εµναβω

ναuβ.

where k · u = ω · u = 0, and 1
2ωµνω

µν = k · k − ω · ω.

We assume the constraint

k · ω = 0

we find the compact form

M± = exp
[
±

1
2
ωµν(x)Σ̂µν

]
→ cosh(ζ) ±

sinh(ζ)

2ζ
ωµνΣ̂

µν,

where

ζ ≡
1
2

√

k · k − ω · ω.

We further assume that k · k − ω · ω ≥ 0 ⇒ ζ is real.
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Charge current

The charge current [S. de Groot, W. van Leeuwen, and C. van Weert]

Nµ =

∫
d3p

2(2π)3Ep
pµ

[
tr(X+) − tr(X−)

]
= nuµ

where ‘tr’ denotes the trace over spinor indices and n is the charge
density

n = 4 cosh(ζ) sinh(ξ) n(0)(T)

Here n(0)(T) = 〈(u · p)〉0 is the number density of spin 0, neutral
Boltzmann particles, obtained using the thermal average

〈· · · 〉0 ≡

∫
d3p

(2π)3Ep
(· · · ) e−β·p ,

where Ep =
√

m2 + p2.

Amaresh Jaiswal Initial Stages 2017 7



Energy-momentum tensor tensor

The energy-momentum tensor for a perfect fluid has the form

Tµν =

∫
d3p

2(2π)3Ep
pµpν

[
tr(X+) + tr(X−)

]
= (ε+ P)uµuν − Pgµν,

where the energy density and pressure are given by

ε = 4 cosh(ζ) cosh(ξ) ε(0)(T)

and

P = 4 cosh(ζ) cosh(ξ) P(0)(T),

respectively. In analogy to the density n(0)(T), we define the auxiliary
quantities

ε(0)(T) = 〈(u · p)2
〉0, P(0)(T) = −(1/3)〈

[
p · p − (u · p)2

]
〉0
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Entropy current

The entropy current is given by an obvious generalization of the
Boltzmann expression

Sµ = −

∫
d3p

2(2π)3Ep
pµ

(
tr

[
X+(ln X+

− 1)
]

+ tr [X−(ln X− − 1)]
)

This leads to the following entropy density

s = uµSµ =
ε+ P − µn − Ωw

T
,

where Ω is defined through the relation ζ = Ω/T and

w = 4 sinh(ζ) cosh(ξ) n(0).

This suggests that Ω should be used as a thermodynamic variable of
the grand canonical potential, in addition to T and µ. Taking the
pressure P to be a function of T , µ and Ω, we find

s =
∂P
∂T

∣∣∣∣∣
µ,Ω

, n =
∂P
∂µ

∣∣∣∣∣
T ,Ω

, w =
∂P
∂Ω

∣∣∣∣∣
T ,µ
.
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Basic conservation laws

The conservation of energy and momentum requires that

∂µTµν = 0.

The longitudinal component with respect to uµ:

∂µ[(ε+ P)uµ] = uµ∂µP.

Rearranging the terms, we get

T ∂µ(suµ) + µ∂µ(nuµ) + Ω ∂µ(wuµ) = 0.

The middle term vanishes due to charge conservation,

∂µ(nuµ) = 0.

Therefore to have conserved entropy current for perfect-fluid

∂µ(wuµ) = 0.
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Basic conservation laws contd.

In the absence of net spin polarization, i.e., for ζ = 0, we obtain
the standard expression: n = 4 sinh(ξ) n(0).

On the other hand, ∂µ(nuµ) = 0 and ∂µ(wuµ) = 0 implies

∂µ [(n ± w)uµ] = 0

We find n ± w = 4 sinh[(µ ± Ω)/T ] n(0) : thermodynamic
quantities corresponding to charge and spin couple.

Ω can be interpreted as a chemical potential related with spin.

A system of spin-1/2 particles = A two component mixture of
scalar particles.

The present framework can be regarded as a minimal extension of
the standard perfect-fluid hydrodynamics of charged particles.

We may first solve these equations and subsequently use this
solution as the dynamic background for the spin evolution.
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Spin dynamics

Since we use a symmetric form of the energy-momentum tensor
Tµν, the spin tensor Sλ,µν satisfies the conservation law,

∂λSλ,µν = 0.

For Sλ,µν we use the form taken from Becattini, Tinti, Annals Phys. 325
(2010) 1566-1594,

Sλ,µν =

∫
d3p

2(2π)3Ep
pλ tr

[
(X+
−X−)Σ̂µν

]
=

wuλ

4ζ
ωµν

Using the conservation law for the spin density, ∂λ(wuλ) = 0, and introducing the rescaled
spin tensor ω̄µν = ωµν/(2ζ), we obtain

uλ∂λ ω̄µν =
dω̄µν

dτ
= 0,

with the normalization condition ω̄µν ω̄µν = 2.
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Spin dynamics contd.

The tensor ω̄µν can be decomposed as

ω̄µν = k̄µ uν − k̄ν uµ + εµνβγ uβ ω̄µ, k̄µ = kµ/(2ζ), ω̄µ = ωµ/(2ζ),

satisfying the constraints

k̄ · u = 0, ω̄ · u = 0, k̄ · ω̄ = 0, k̄ · k̄ − ω̄ · ω̄ = 1,

which leave only four independent components in k̄µ and ω̄µ.

The last condition is fulfilled by employing the parameterization

k̄µ = mµ sinh(ψ), ω̄µ = nµ cosh(ψ).

The four-vectors mµ and nµ are space-like and normalized to −1,

mµmµ = −1, nµnµ = −1.

and satisfy the transversality conditions

m · u = n · u = m · n = 0.
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Spin dynamics contd.

We find two coupled equations

dmµ

dτ
sinh(ψ) + mµ cosh(ψ)

dψ
dτ

+ mνaν sinh(ψ)uµ + εµνβγuνaβnγ cosh(ψ) = 0,

dnµ
dτ

cosh(ψ) + nµ sinh(ψ)
dψ
dτ

+ nνaν cosh(ψ)uµ + εµναβuνaβmα sinh(ψ) = 0.

Here aµ = duµ/dτ is the acceleration of the fluid element.

Conditions on mµ and nµ are satisfied during the time evolution of
the system, if they are satisfied on the initial hypersurface and if
the following equation is fulfilled by the variable

dψ
dτ

= εµνβγmµuνaβnγ.
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Vortex solution 1

Consider a rigidly rotating fluid with flow proflie given by

u0 = γ, u1 = −γ Ω̃ y , u2 = γ Ω̃ x , u3 = 0,

where Ω̃ is a constant, γ = 1/
√

1 − Ω̃2r2, and r ≡
√

x2 + y2.

The assumed flow profile can be realised only within a cylinder
with the radius R < 1/Ω̃.

The total time (convective) derivative takes the form

d
dτ

= uµ∂µ = −γΩ̃

(
y
∂
∂x
− x

∂
∂y

)
.

The above equation can be used to find the fluid acceleration

aµ =
duµ

dτ
= −γ2Ω̃2(0, x , y ,0).

The spatial part of the four-acceleration points towards the centre
of the vortex, as it describes the centripetal acceleration.
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Spin/polarization tensor

Equations of the hydrodynamic background ∂µTµν = 0,
∂µ(nuµ) = 0, and ∂µ(wuµ) = 0 are satisfied for

T = T0γ, µ = µ0γ, Ω = Ω0γ.

One possibility is that the vortex represents an unpolarized fluid
with ωµν = 0 and thus, with Ω0 = 0. Trivial solution!

Another possibility is that Ω0 , 0. In this case

ωµν =


0 0 0 0
0 0 −Ω̃/T0 0
0 Ω̃/T0 0 0
0 0 0 0

 ,
This yields kµ = Ω̃2(γ/T0)[0, x , y ,0] and ωµ = Ω̃(γ/T0)[0,0,0,1].

As a consequence, we find ζ = Ω̃/(2T0), which, for consistency
with the hydrodynamic background equations, implies

Ω̃ = 2 Ω0.
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Thermal vortex

With Ω̃ = 2 Ω0, it is straightforward to show that our spin-evolution
equation uλ∂λ[ωµν/(2ζ)] = 0 is satisfied.

We also note that the spin tensor agrees with the thermal vorticity

$µν = −
1
2

(
∂µβν − ∂νβµ

)
as emphasised in the works by Becattini and collaborators.

Therefore the above thermal vortex in global equilibrium satisfy
the rigidly rotating vortex solution of our spin evolution equation.

Important to consider evolution of vortices within hydrodynamic
framework to study polarization observables.

One of course needs initial condition with vortices to start the
evolution.
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Conclusions and Summary

In this work we have introduced a hydrodynamic framework, which
includes the evolution of the spin density.

Equations that determine the dynamics of the system follow solely
from conservation laws.

They can be regarded as a minimal extension of the well
established perfect-fluid picture.

Our framework can be used to determine the space-time
dynamics of fluid variables including the spin tensor.

This property makes them useful for practical applications in
studies of polarization evolution in high-energy nuclear collisions.

In particular, the possibility to study the dynamics of systems in
local thermodynamic equilibrium represents an important advance
compared to studies, where global equilibrium was assumed.
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Thank you for your attention!
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