Vorticity and global polarization in heavy-ion collisions

Takafumi Niida

Wayne State University

Initial Stages 2017, Kraków, Poland

ally Polarized Quark-gluon Plasma in Non-central A+A heory

rized secondary particles in unpolarized high energy hadronlisions?

loshin 2004)

hat such effects could contribute to the prod

story

hin [<u>view email</u>] 19:43:03 GMT (3kb) paper are endorsers? | Disable MathJax (What is MathJax?)

orm interface, contact.

tum of the iscuss a mentum. I isions.

hadron-

mentum of the r I discuss a e momentum. I collisions.

'arxiv.org/abs/nucl-

http://arxiv.org/

Vorticity in HIC

In non-central collisions, the initial longitudinal flow velocity depends on x, which makes the initial angular momentum.

$$\omega_y = (\frac{1}{2}\nabla \times \mathbf{v})_y \approx -\frac{1}{2}\frac{\partial v_z}{\partial x}$$

See F. Becattini's talk!

Global Polarization of Λ

 \star Non-zero angular momentum transfers to Λ polarization

Two effects

spin-orbit coupling

spins of Λ and anti-Λ are aligned
 with angular momentum L

spin alignment by B-Field

- o Λ spin anti-aligned along ${\it B}$
- o anti- Λ spin aligned along ${\pmb {B}}$

How to measure the polarization?

 \vec{s}^*_{Λ} θ^* \vec{p}^*_p \vec{p}^*_{π}

the A

parity-violating decay

daughter proton preferentially decays in the direction of Λ 's spin (opposite for anti- Λ) $\frac{dN}{d\Omega} = \frac{1}{4\pi} (1 + \alpha \mathbf{P}_{\Lambda} \cdot \mathbf{p}_{\mathbf{p}}^{*})$

Projected onto transverse plane:

$$P_H = \frac{8}{\pi \alpha} \frac{\langle \sin(\Psi_1 - \phi_p^*) \rangle}{\operatorname{Res}(\Psi_1)} \operatorname{sgn}_{\Lambda}$$

STAR, PRC76, 024915 (2007)

T. Niida, Initial Stages 2017

 α : Λ decay parameter (=0.642\pm0.013) ϕ_{p}^{*} : ϕ of daughter proton in Λ rest frame Ψ_{1} : 1st-order event plane sgn_{1}: 1 for Λ , -1 for anti- Λ

First paper on Λ polarization from STAR in 2007

STAR, PRC76, 024915 (2007)

- Results were consistent with zero, giving an upper limit of 0.2%

fluid vortices formed by HIC

$\boldsymbol{\sqrt{s_{NN}}}$ dependence of $\boldsymbol{\Lambda}$ polarization

• Positive signals in $\sqrt{s_{NN}}=7.7-62.4$ GeV

• indication of thermal vorticity! $\omega_T = (\frac{1}{2} \nabla \times \mathbf{v}/T)$

A global polarization vs $\sqrt{S_{NN}}$

 Why larger signal in lower energy?
 Initial angular momentum is largest at high energy

A global polarization vs $\sqrt{S_{NN}}$

Why larger signal in lower energy?
 Initial angular momentum is largest at

high energy

Karpenko and Becattini, EPJC(2017)77:213

At higher collision energies,

 Smaller shear flow structure at mid-η due to baryon transparency

See I. Karpenko's talk!

A global polarization vs $\sqrt{s_{\text{NN}}}$

Positive signals in $\sqrt{s_{NN}}=7.7-62.4$ GeV
 indication of thermal vorticity!
 $\omega_T = (\frac{1}{2} \nabla \times \mathbf{v}/T)$

Ρ $_{H}(\Lambda) < P_{H}(anti-\Lambda)$ systematically

• implying a contribution from B-field

For small thermal vorticity,

$$P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$
$$P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin PRC95.054902 (2017)

Accounting for feed-down

• only ~25% of measured Λ and anti- Λ are primary, while ~60% are feed-down from $\Sigma^* \rightarrow \Lambda \pi$, $\Sigma^0 \rightarrow \Lambda \gamma$, $\Xi \rightarrow \Lambda \pi$

• One needs to correct it before extracting physical parameters

$$\begin{pmatrix} \varpi_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix}$$
Becattini, Karpenko, Lisa, Upsal, and Voloshir

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

 $f_{\Lambda R}\,$: fraction of Λ originating from parent R

 $C_{\Lambda R}$: coefficient of spin transfer from parent R to Λ

- S_R : parent particle's spin
- $\mu_{\rm R}\,$: magnetic moment of particle R

~15% dilution of primary Λ polarization (model-dependent)

Extracted vorticity and B-field

• Vorticity

•
$$\omega/T$$
 ~ 2-10% ($\hbar = k_B = 1$)

• $\omega \sim 0.02 - 0.09 \text{ fm}^{-1}$ (when assuming T=160 MeV)

FIG. 12. Averaged vorticity $\langle \omega_y \rangle$ from the AMPT model as a function of time at varied beam energy $\sqrt{s_{NN}}$ for fixed impact parameter b = 7 fm. The solid curves are from a fitting formula (see text for details).

Extract vorticity and B-field

• Vorticity

o $\omega/{
m T}$ ~ 2-10% ($\hbar=1,~k_B=1$)

ω~0.02-0.09 fm⁻¹
 (when assuming T=160 MeV)

• Magnetic field

- Data are consistent with zero, but a possible direct probe of B-field
- Looking forward to BES II

Back to Λ polarization results

A global polarization vs $\sqrt{s_{\text{NN}}}$

TN, QCD Chirality Workshop 2017 Au+Au 20-50% Nature548.62 (2017) **STAR Preliminary** $\bullet \overline{\Lambda}$ $\star \Lambda$ PRC76.024915 (2007) $O\overline{\Lambda}$ $\Delta \lambda$ preliminary (20-60%) 2 $\langle \overline{\Lambda} \rangle$ $\bullet \Lambda$ 0 vHLLE+UrQMD, Λ primary - - - primary+feed-down AMPT, Λ primary+feed-down primary -10² 10 √s_{NN} [GeV]

vHLLE+UrQMD: Karpenko and Becattini, EPJC(2017)77:213 AMPT: H. Li et al., arXiv:1704.01507 ■ Finite signal of P_H at $\sqrt{s_{NN}} = 200 \text{ GeV}$

P_H~0.18%±0.08±0.06

- no significant difference between Λ and anti- Λ
- close to viscous-hydro
 +UrQMD and AMPT
 predictions in all energies

P_H [%]

Go to the LHC energy

 ALICE preliminary results are consistent with zero, but it seems to follow the global trend
 Need more events!

vHLLE+UrQMD: Karpenko and Becattini, EPJC(2017)77:213 AMPT: H. Li et al., arXiv:1704.01507 ALICE prelim: M. Konyushikhin, QCD Chirality Workshop 2017

Further detailed study at 200 GeV

Centrality dependence

• Slight increase in peripheral events for anti- Λ ?

 Not enough statistics for now (year2011 data), but recent data (year2014-2016) will allow to make it clear.

pt dependence

 No significant p_T dependence was observed within current uncertainties

n dependence

 $\mbox{ }$ No significant η dependence (as expected) within uncertainties

 Lower energies or LHC energy with wider η acceptance (CMS&ATLAS) would be more interesting to see

Azimuthal angle dependence

* EP resolution correction (on x-axis) is not applied here

Larger signal in in-plane direction

Opposite-trend to hydrodynamical calculations?

Λ polarization vs charge asymmetry?

 Λ polarization may be related to the axial current J₅ induced by B-filed (Chiral Separation Effect), S. Shlichting and S. Voloshin, in preparation

 \square Use (kaon) charge asymmetry instead of $\mu_{\, \mathrm{v}}$

Charge asymmetry dependence

No clear trend within current uncertainties. Need more events…

Quark-gluon Plasma in Non-central A+A

ry particles in unpolarized high energy hadron-

6/30/16, 11:26 AM

http://arxiv.org/abs/nucl-th/0410089

Quark-gluon Plasma in Non-central A+A

ry particles in unpolarized high energy hadron-

Fig. 8 Directed flow of pions at $\eta/s = 0.1$ and $\eta_m = 2.0$ compared with STAR data [22]

6/30/16, 11:26 AM

Becattini et al., Eur. Phys. J. C (2015) 75: 406

http://arxiv.org/abs/nucl-th/0410089

Quark-gluon Plasma in Non-central A+A

ry particles in unpolarized high energy hadron-

arxostheroobservables

Fig. 8 Directed flow of pions at $\eta/s = 0.1$ and $\eta_m = 2.0$ compared with STAR data [22]

Becattini et al., Eur. Phys. J. C (2015) 75: 406

A lot of interesting things!

e.g. Relation to directed flow

Similar energy dependence of dv₁/dy and polarization!

T. Niida, Initial Stages 2017

Directed flow vs models with initial tilt

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

-4

[fm]

3

0

Σ

Many models fail to reproduce v₁

 η m determines the initial tilt Bozek and Wyskiel, PRC81.054902 (2010)

-3

-2

-1

0

Y (rapidity)

 η_{\parallel}

2

3

4

 η_m =4.36 η_m =2.36

Becattini et al., Eur. Phys. J. C (2015) 75: 406

Better description of v

theory in Bjorken coordinates Weak energy dependence (might even show that, with the initial conditions needed to reproduce the measured directed flow in periperson of the order of some 10⁻² c/fm can develop at Gluon Plasma with $\eta/s = 0.1$ fixed, a vorticity of the order of some 10⁻² c/fm can develop at - Measurements wrt Ψ_2 - good We have found that the magnitude of the $1/\tau x - \eta$ com-We have found that the magnitude of the $1/\tau x - \eta$ com- τ ponent of the thermal vorticity fields pointed out from the very beginn The hydrodynamical model has by now become a paradigm work is to make a general assessment of the meetse the paradistry needs of the paradistry of the meetse the paradistry of the paradistry o

T. Niida, 5_{n} id $0.5t^{2}_{ag}$ and 0.9 et its mean value is not large enough to produce

pointed out from the very beginn

The hydrodynamical model has by now become a paradigm work is to make a general assessment of the meetse the paausarity neenstraint of the meetse the paausarity neenstraint of the data. Therefore, our calculations

T. Niida, 5_{n} id $0.5t_{ag}^{2}$ and over its mean value is not large enough to produce

ponent of the thermal vorticity fields The hydrodynamical model has by now become a paradigm work is to make a general assessment of the meetse the paragraphic paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the meetse the paradigm work is to make a general assessment of the paradigm work is to make *T. Niida*, 5_{n} id $0_{\overline{tag}}$ and $0_{\overline{y}}$ et its mean value is not large enough to produce

 $u^x = u^y = u^\eta = 0$), henceforth d pointed out from the very beginn

with Blast-wave parameterization

S. Voloshin, sQM2017

The sign depends on the relation between flow (an) and spatial (sn) anisotropy,

The effects similar to prefemato stoppher harmonics, e.g. for triangular flow.

There could exist a substructure of vorticity created by elliptic flow (and higher-harmonic flow as well)

Summary

- □ First observation of Λ global polarization at $\sqrt{s_{NN}} = 7.7-39$ GeV at STAR, followed by preliminary studies at $\sqrt{s_{NN}} = 200$ GeV
 - Indicating a thermal vorticity of the medium in non-central heavy-ion collisions, of the order of a few percent
 - A possible difference between Λ and anti-Λ, which could be due to the initial strong B-field and therefore be a direct probe of the B-field
 - Energy dependence of the polarization can be understood by a shear flow structure within limited acceptance
 - More studies are ongoing, e.g. charge-asymmetry dependence and substructure of the polarization (z-component)

Possible relation to many other observables (v1, v2, HBT, CSE/CVE)

Vorticity is an important piece for further understanding the picture of HIC!

