Electroweak boson production in heavy ion collisions with the ATLAS detector

Piotr Janus on behalf of the ATLAS Collaboration

AGH University of Science and Technology, Cracow, Poland

Electroweak bosons:

- high-precision test of pQCD (pp),
- parton distribution function (PDF) and nuclear modifications (nPDF) can be investigated,
- one can study initial state effects (p+Pb) and impact of interaction with nuclear medium formed in nucleus-nucleus collisions,
- provides information on centrality and geometry of p+Pb and Pb+Pb systems (T_{AA} scaling) as EW bosons are insensitive to final state interactions,
- with LHC energies, a range of photon spectra can be measured in broader scope.

ATLAS detector & data

- Muon, electron and photon triggers designed to collect high- $p_{\rm T}$ objects.
- Measurements of electroweak bosons based on:
 - $pp: \sqrt{s} = 5.02 (24.7 \text{ pb}^{-1}),$ 8 TeV (20.2 fb⁻¹)
 - $p+Pb: \sqrt{s} = 5.02$ (28.1 nb⁻¹), 8.16 TeV (0.16 pb⁻¹)
 - Pb+Pb: $\sqrt{s} = 5.02 \text{ TeV}$ (0.49 nb⁻¹)

Z bosons in Pb+Pb at 5.02 TeV

- Yield per min-bias (MB) event divided by T_{AA} of Z bosons as a function of N_{part} inside |y_Z| < 2.5
- Normalized yields are consistent with independence of centrality.
- The most peripheral point slightly deviates.
- High precision result uncertainties are smaller on measuring Z bosons than on T_{AA} and luminosity.

ATLAS-CONF-2017-010

Z bosons in p+Pb at 5.02 TeV

- Cross sections asymmetric in y_Z^* .
- Sensitive to nPDF.
- Models underestimate total cross section.
- Shape better described by model with nuclear modifications (CT10+EPS09).
- Differences for y^{*}_Z < 0 in agreement with W results (next slide).

W bosons in p+Pb at 5.02 TeV

- Differential cross section as a function of $\eta^{\mu}_{\rm lab}$.
- Shift of centre-of-mass has impact on distributions.
- The isospin effect is visible in charge asymmetry:

$$A_{\mu}=\frac{N^+-N^-}{N^++N^-}$$

- POWHEG with CT10 works well for $\eta^{\mu}_{lab} > 0$ while for Pb-going side $(\eta^{\mu}_{lab} < 0)$ is below data.
- Similar disagreement for $(\eta_{lab}^{\mu} < 0)$ seen in Z result (previous slide).

Prompt photon production in Pb+Pb at 2.76 TeV

- Ratios of forward and central yields.
- Clear sensitivity to nuclear effects: JETPHOX *pp* is above JETPHOX EPS09.
- Statistical and systematic uncertainties on data are too large to distinguish between models.
- Slight preference for the calculations incorporating nuclear effects.

W bosons in Pb+Pb at 5.02 TeV

NEW

- $\bullet~0.49~{\rm nb^{-1}}$ of data
- 15 GeV single muon trigger
- $p_{\mathrm{T}}>$ 25 GeV, 0.1 $<|\eta|<$ 2.4
- isolated muon
- $p_{\rm T}^{\rm miss} > 25$ GeV, where $p_{\rm T}^{\rm miss}$ is a negative vector sum of transverse momenta of tracks which pass a minimum $p_{\rm T}$ requirement
- $m_{\mathrm{T}} > 40$ GeV, where $m_{\mathrm{T}} = \sqrt{2 p_{\mathrm{T}}^{\mu} \rho_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos(\Delta \phi))}$
- ullet ~ 48000 $W^{+,-}$ boson candidates
- Background:
- Electroweak backgrounds and $t\bar{t}$ were simulated and normalized to the cross section.
- QCD multi-jet background was extracted with data driven method.

Normalized yield as a function of $\langle N_{\text{part}} \rangle$

- Corrected to fiducial volume:
 - $p_{\mathrm{T}}^{\mu} > 25$ GeV, $0.1 < |\eta_{\mu}| < 2.4$
 - $p_{\mathrm{T}}^{
 u}>25$ GeV, $m_{\mathrm{T}}>40$ GeV.
- Corrected for detector/trigger efficiency and background
- Divide by $\langle T_{\rm AA} \rangle$ and N_{evt}
- Uncertainty on $\langle T_{AA} \rangle$: 1-7%
- Covered 0 80% centrality range.
- Observed normalized yields are independent of centrality.
- Peripheral measurements slightly deviate. Similar effect seen in *Z* measurement (slide 4).
- POWHEG including isospin effects and scaled by $k_{\rm NNLO}$ agrees with data.

ATLAS-CONF-2017-067

Differential yields as a function of η

- Differential yields as a function of η_{μ} and $|\eta_{\mu}|$
- Extracted from 0 80% centrality range.
- Uncertainty on $\langle T_{AA} \rangle$: 1.5%
- Other systematics: 3-7%
- POWHEG (CT10) scaled by k_{NNLO} agrees with data
- MCFM using nPDF (EPPS16 and nCTEQ15) differ in normalization.
- Results at 2.76 TeV and 5.02 TeV are compared.
- W boson yields grow with collision energy.
- Shapes tend to be similar at both energies.


```
2.76 TeV - Eur. Phys. J. C (2015) 75:23
5.02 TeV - ATLAS-CONF-2017-067
```

Piotr Janus (AGH UST)

18-22.9.2017 10 / 21

Lepton charge asymmetry

- Charge asymmetry as a function of $|\eta_{\mu}|$: $A_{\mu} = \frac{N^+ - N^-}{N^+ + N^-}$
- Extracted from 0 80% centrality range.
- Predictions from POWHEG (CT10) and MCFM nPDF (EPPS16 and nCTEQ15) are comparable in whole η_{μ} range. No sensitivity to nPDF.
- Central range ($|\eta_{\mu}| < 1.6$) well described by MC.
- Discrepancies appear in forward range $(1.6 < |\eta_{\mu}| < 2.4).$

ATLAS-CONF-2017-067

18-22.9.2017 11 / 21

Prompt photons in p+Pb at 8.16 TeV

NEW

- $\bullet~0.16~{\rm pb}^{-1}$ of data
- $E_{
 m T}^{\gamma}>25~{
 m GeV}$
- $E_{
 m T}^{
 m iso} < 4.8~{
 m GeV} + 4.2 imes 10^{-3} E_{
 m T}^{\gamma}/{
 m GeV}$
- $|\eta^{\gamma}| < 1.37, \ 1.56 < |\eta^{\gamma}| < 2.37$
- rapidity boost by $\Delta y = \pm 0.465$

Prompt photon spectra

- $d\sigma/dE_{\rm T}^{\gamma}$ decreases by five orders of magnitude.
- Observed yield up to $E_{\rm T}^{\gamma} \approx 500~{\rm GeV}$ at mid-rapidity.
- Uncertainties range from 6% to 10%.
- JETPHOX calculation underpredicts the data by up to 20% (consistent with the results of such comparisons in *pp*).

Reference for p+Pb at 8.16 TeV

- Differential cross section was measured in *pp* at 8 TeV (same isolation and kinematic range as in *p*+Pb at 8.16 TeV).
- To construct a correct reference one needs to extrapolate the 8TeV measurement (w/o boost) to 8.16TeV (w/ boost).
- The ratio $\sigma_{8.16 TeV}/\sigma_{8 TeV}$ using JETPHOX and PYTHIA8 calculation is determined.
- The extrapolation factors become large at large E^γ_T.
- Majority of correction comes from the boost of the *p*+Pb system.
 Piotr Janus (AGH UST)

EW boson production

$R_{p\mathrm{Pb}}$ (I)

- ${\it R_{p
 m Pb}}$ as a function of ${\it E_{
 m T}^{\gamma}}$ and η^{*}
- At mid-rapidity, the $R_{p\rm Pb}$ is consistent with unity (isospin or other nuclear effects are small).

$$R_{
m PPb} = rac{d\sigma^{
m p+Pb
ightarrow \gamma + X}/dE_{
m T}^{\gamma}}{A \cdot d\sigma^{
m pp
ightarrow \gamma + X}/dE_{
m T}^{\gamma}}$$

- At high $E_{\rm T}^{\gamma}$ at backward pseudorapidity, the $R_{\rm pPb}$ is significantly lower than unity.
- This effect is driven by the different isospin composition of pp and p+Pb systems.
- Comparison to initial state energy loss model. Data disfavour a large suppression due to energy loss effects.

15 / 21

$R_{p\mathrm{Pb}}$ (II)

- Comparison to CT14, nCTEQ15 and EPPS16.
- Data are consistent with the free proton PDFs and with the small effects expected from a nuclear modification of the parton densities.

16 / 21

Summary

- The electroweak boson production has been studied in three different systems: *pp*, *p*+Pb, Pb+Pb.
- Predictions for W and Z bosons mostly agree with data with small deviations in some kinematic regions.
- Two new results were presented.
- The W boson yields in Pb+Pb at 5.02 TeV integrated over η_{μ} are found to scale with $\langle T_{AA} \rangle$ in all centralities.
- Lepton charge asymmetry in the forward direction slightly deviates from predictions.
- Inclusive prompt photon cross-section in p+Pb at 8.16 TeV was measured in broad E_T^{γ} range.
- R_{pPb} consistent with unity at mid-rapidity range.
- It is in agreement with JETPHOX with the EPPS16/nCTEQ15 while data disfavour large suppression due to energy loss effects.

More information can be found in

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

Backup slides

Z Bosons in Pb+Pb at 5.02 TeV - Event selection

- \bullet 0.49 nb^{-1} of data
- 8 GeV single muon trigger
- Opposite charge muons
- $p_{\mathrm{T}} > 20$ GeV, $|\eta| < 2.5$
- 66 $< m_{\mu\mu} <$ 116 GeV
- ullet \sim 5500 counts
- Background:
 - $Z \rightarrow \tau^+ \tau^-$ and $t\bar{t}$ were simulated and normalized to the cross section
 - QCD multi-jet background was extracted with data driven method.
 - $\bullet~\sim 0.5\%$

ATLAS-COM-2017-010

Rapidity differential yields

- Corrected to fiducial volume:
 - $66 < m_Z < 116$ GeV, $|y_Z| < 2.5$
 - $p_{
 m T}^{\mu}>$ 20 GeV, $|\eta_{\mu}|<$ 2.5
- Corrected for detector/trigger efficiency and background.
- Divide by $\langle T_{AA} \rangle$.
- Extracted from 0 80% centrality range.
- Shown with comparison to *pp* data.
- POWHEG (CT10) scaled by k_{NNLO} agree with data.
- Expected $R_{AA} \approx 1.02$ due to isospin effects consistent with expectations.

$${\it R}_{
m AA} = rac{1}{\langle {\it T}_{
m AA}
angle {\it N}_{
m evt}} rac{d {\it N}_{
m Pb+Pb}/dy}{d \sigma_{pp}/dy}$$

ATLAS-COM-2017-010

Piotr Janus (AGH UST)

18-22.9.2017 20 / 21

Rapidity differential yields in centrality

- Corrected to fiducial volume:
 - $66 < m_Z < 116$ GeV, $|y_Z| < 2.5$
 - $p_{
 m T}^{\mu}>$ 20 GeV, $|\eta_{\mu}|<$ 2.5
- Corrected for detector/trigger efficiency and background.
- Divide by $\langle T_{AA} \rangle$.
- Shown with comparison to *pp* data.
- Largely consistent with expectations. The most peripheral bin is different from unity by $\sim 1.5\sigma$

ATLAS-COM-2017-010