

Heavy flavour and quarkonia measurement with ATLAS detector

Petr Gallus on behalf of the ATLAS Collaboration 4th International Conference on the Initial Stages in High-Energy Nuclear Collisions Polish Academy of Arts and Sciences, Crakow, Poland

20/09/2017

Open and Hidden Heavy Flavours in p+A collisions

- contain heavy *c* or *b* quarks
- interact strongly with medium produced in nucleus-nucleus collisions cold and hot matter effects
- in p+A collisions should only contain cold matter effects
 - modification of nuclear PDF & parton energy loss as initial-state effect
 - absorption in medium as final state effect
- D⁰ and D^{*} mesons are also used to measure D^{*}-hadron correlations (see <u>correlation talk by Qipeng Hu</u>)

Nuclear modification factorForward to backward yield ratiodouble ratio
$$R_{pPb} = \frac{1}{208} \frac{\sigma_{pPb}^{O(nS)}}{\sigma_{pp}^{O(nS)}}$$
 $R_{FB} = \frac{d\sigma(O(nS))/dp_T dy^*(y^* > 0)}{d\sigma(O(nS))/dp_T dy^*(y^* < 0)}$ $\rho_{pPb}^{O(nS)/O(1S)} = \frac{R_{pPb}^{O(nS)}}{R_{pPb}^{O(1S)}}$ $O(nS) = measured meson$ $O(nS) = measured meson$ $\rho_{pPb}^{O(nS)/O(1S)} = \frac{R_{pPb}^{O(nS)}}{R_{pPb}^{O(1S)}}$

ATLAS detector

D meson measurements in p+Pb at $\sqrt{s_{NN}} = 8.16 TeV$

New results

- September 2017 *D* meson production- ATLAS-CONF-2017-073
 - 2016 p+Pb $\sqrt{s_{NN}} = 8.16 \, TeV$
 - correlation part in <u>talk by Qipeng Hu</u>

Prompt D mesons reconstruction

Reconstructed decay channels

$$D^0 \rightarrow K\pi$$
 and $D^* \rightarrow D^0\pi_s \rightarrow K\pi\pi_s$ (π_s - "soft" pion)

- Reconstructed primary vertex
- Pairs of oppositely- charged tracks, $p_T^{trk} > 1$ GeV, combined to form D^0 candidate ($1.7 < m(K\pi) < 2.0$ GeV)
- D^0 topological cuts secondary vertex probability (χ^2 fit) $\cos \alpha_{xy}$ - close to 1 $L_{xy}/\sigma(L_{xy})$
- "soft" pion π_s for D^* track with $p_T > 400~MeV$
- D^* candidate invariant mass distribution for fit $\Delta m = m(K\pi\pi_s) - m(K\pi)$
- non- prompt substracted based on pp FONLL $b \rightarrow D$ at the 8 TeV

Fit of D^0 and D^* invariant mass distributions

ATLAS-CONF-2017-073

Differential cross section for prompt production

Measured charm meson production cross sections are compatible with extrapolated FONLL x A_{Pb} from 7 & 8 TeV to 8.16 TeV prediction within uncertainties.

ATLAS-CONF-2017-073

FONLL model arXiv: 1205.6344 [hep-ph]

Forward to backward ratio

No significant modification of D^0 and D^* production in forward direction with respect to backward has been observed. Hint of D^0 relative modification at low p_T , but large uncertainties.

ATLAS-CONF-2017-073

20/09/2017

Quarkonia measurements

New results

September 2017 Quarkonia p+Pb paper – <u>arXiv:1709.03089</u>

2013 p+Pb $\sqrt{s_{NN}} = 5.02 \ TeV$ and 2015 p+p $\sqrt{s} = 5.02 \ TeV$

Quarkonia candidate selection

Muon trigger : different for p+Pb and pp

- p+Pb: at least one muon at hardware level ($p_T^{\mu} > 0 \ GeV$, $|\eta| < 2.4$), 2 muons with $p_T > 2 \ GeV$ in offline trigger
- pp: 2 muons candidates at hardware level ($p_T^{\mu} > 4 \ GeV$, $|\eta| < 2.4$) candidates are muons with opposite charge in offline level

Di-muon range

- p+Pb $\psi(nS)$: $p_T^{\mu\mu} \in \langle 8.5; 30 \rangle \, GeV, -2 < y^* < 1.5$
- p+Pb $\Upsilon(nS)$: $p_T^{\mu\mu} \in (0; 40) \text{ GeV}, -2 < y^* < 1.5$

Yield extraction

$\psi(nS)$

Weighted 2D unbinned maximum likelihood fit

- dimuon invariant mass and lifetime
- per-dimuon weight: trigger, reconstruction, acceptance
- extract fraction of prompt and non-prompt

 $\Upsilon(nS)$

Weighted unbinned 1D maximum likehood fit

- dimuon invariant mass only
- per-dimuon weight: trigger, reconstruction, acceptance
- different acceptance for each state
- Background parametrisation is p_T dependent. Low $p_T^{\mu\mu} < 6 \ GeV$ or integrated over p_T range High $p_T^{\mu\mu} > 6 \ GeV$

Nuclear modification factor of quarkonia (R_{pPb})

Excited states – Double ratio all centralities

Double ratio for both excited states shows suppression compared to pp collisions. The measured double ratio agrees with CMS and theory prediction.

arXiv:1709.03089

Excited states - Double ratios

Double ratios of ψ (2S) and Υ (2S) are decreasing slightly with centrality with significance level of one sigma. Υ (3S) is inconclusive due to uncertainty.

arXiv:1709.03089

Comparison to Z boson in p+Pb collisions

Summary

Quarkonia and *D* meson productions in p+Pb collisions are presented.

- D meson
 - Yields are consistent with FONLL prediction from pp after scaling by mass number of Pb nucleus.
 - Forward to background ratio R_{FB} shows no significant asymmetry in production for prompt D^0 and D^* mesons within $|y^*| < 0.5$.
 - The poster <u>D meson production and long-range azimuthal correlation in</u> <u>8.16 TeV p+Pb collisions with ATLAS</u> by Qipeng Hu.
- Quarkonia
 - Prompt $J/\psi~{\rm R_{pPb}}$ shows no obvious p_T dependence and is consistent with unity.
 - For Υ (1*S*) R_{pPb} , we observe suppression at low p_T .
 - Excited states are more suppressed with respect to the ground state and show slight centrality dependence.
 - Ratios of quarkonia ground states to Z boson are independent on event activity and scale with the number of binary collisions.
- ATLAS HI Public Results

Additional slides

20/09/2017

Pseudo-proper decay time

$$\tau = \frac{L_{xy}m_{\mu\mu}}{p_T^{\mu\mu}}$$

 L_{xy} = projection of decay length on the transverse plane

1

8

Definition of y*

$$y^* = y_{lab} - 0.465$$

$$y^* = -(y_{lab} + 0.465)$$

due to shift of center of mass

y* is defined as positive in proton beam direction

20/091/20/2017

1

9

Nuclear modification factor R_{AA} and R_{pA}

$$R_{AA} = \frac{N^{AA}}{\langle T_{AA} \rangle \times \sigma^{pp}}$$

- N^{AA} per-event yield of quarkonia states in A+A collisions
- $\langle T_{AA}
 angle$ mean nuclear function ψ
- σ^{pp} cross section in pp collisions

$$R_{pA} = \frac{1}{A^{Pb}} \frac{d^2 \sigma_{\psi}^{p+Pb}/dy * dp_T}{d^2 \sigma_{\psi}^{p+p}/dy * dp_T}$$

$$R_{pA}^{cent} = \frac{\langle 1/N_{evt}^{cent} \rangle \ d^2 N^{p+Pb} / dy dp_T|_{cent}}{\langle T_{pPb} \rangle_{cent} \ d^2 \sigma^{pp} / dy dp_T}$$

20/091/20/2017

2

0

Yields per event scaled by 1/208

2017-04

*p*_[GeV]

Fit of ψ (nS)

Fit of Y (nS)

Simultaneous Fit Method

i	Туре	Source	$f_i(m)$	$h_i(\tau)$
1	J/ψ S	Р	$\omega_i CB_1(m) + (1 - \omega_i)G_1(m)$	$\delta(au)$
2	J/ψ S	NP	$\omega_i CB_1(m) + (1 - \omega_i)G_1(m)$	$E_1(\tau)$
3	ψ(2S) S	Р	$\omega_i CB_2(m) + (1 - \omega_i)G_2(m)$	$\delta(au)$
4	$\psi(2S) S$	NP	$\omega_i CB_2(m) + (1-\omega_i)G_2(m)$	$E_2(\tau)$
5	Bkg	Р	flat	$\delta(au)$
6	Bkg	NP	$E_3(m)$	$E_4(\tau)$
7	Bkg	NP	$E_5(m)$	$E_6(\tau)$

 $PDF(m, \tau)$ $= \sum_{i=1}^{7} k_i f_i(m) \cdot h_i(\tau) * g(\tau)$ CB: Crystal ball function G: Gaussian E: Exponential g: Double Gaussian $\delta: Delta Function$

arXiv:1709.03089

20/09/ 2017

Exited states - Double ratios

Double ratio of ψ (2S) have decreasing trend with one sigma significance in y^* and Υ (*nS*) are less than unity by more than 2 sigmas.

arXiv:1709.03089

Nuclear modification factor of Y (1S) (R_{pPb})

Suppression for low $p_T \Upsilon (1S)$ indicates a modification of nuclear parton distribution functions. No significant rapidity dependence.

arXiv:1709.03089

20/09/2017

Nuclear modification factor of J/ψ (R_{pPb})

The $J/\psi R_{pPb}$ as a function of p_T are consistent with unity across p_T range within correlated and uncorreletad uncertainties.

R_{AA} < 1 mean suppresion arXiv:1709.03089

Nuclear modification factor of J/ψ (R_{pPb})

D meson FNOLL error contributions

- renormalisation & factorisation scale variations
- charm quark mass & PDFs uncertainty

for more reference: arXiv: 1205.6344 [hep-ph]