4th International Conference on the Initial Stages in High-Energy Nuclear Collisions

Contribution ID: 120

Type: not specified

Energy and multiplicity dependence of charged particle production in pp and p-Pb collisions with ALICE at the LHC

Tuesday, 19 September 2017 14:30 (20 minutes)

The study of the charged particle production as a function of the multiplicity in small colliding systems, as pp and p-Pb, is an attractive tool to understand the similarities and differences between small and large colliding systems. Evidence of similarities, like coherent and collective effects, well known in nucleous-nucleous (A-A) collisions, has been found experimentally in small systems.

New results on the primary charged-particle pseudo-rapidity density and transverse momentum ($p_{\rm T}$) distributions at central pseudo-rapidity in pp ($\sqrt{s} = 5.02$ and $\sqrt{s} = 13$ TeV) and p-Pb ($\sqrt{s} = 5.02$ and 8.16 TeV) collisions as a function of multiplicity are going to be presented.

In order to study the hard component of particle spectra in pp collisions, a power law fit of the distributions for $p_{\rm T}>4$ GeV/c is performed and the evolution with multiplicity of the resulting fit parameters is discussed. To the same purpose, the ratio of multiplicity-dependent yields over minimum bias yields integrated over $4 < p_{\rm T} < 8$ GeV/c is studied and compared to results for heavy-flavour particles. Results are presented using two multiplicity estimators, at mid pseudo-rapidity ($|\eta| < 0.8$) and forward-backward pseudo-rapidity ($-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$) to study the differences caused by the multiplicity selection in different pseudo-rapidity windows.

A comparison with Monte Carlo event generators and models, like EPOS-LHC and PYTHIA 8, will be shown.

Primary author: IGA BUITRON, Sergio Arturo (Universidad Nacional Autonoma (MX))
Presenter: IGA BUITRON, Sergio Arturo (Universidad Nacional Autonoma (MX))
Session Classification: Small systems