

Measurements of charmonium production and v_2 coefficient in p-Pb collisions

C.Cheshkov On behalf of ALICE Collaboration

IPNL Lyon & CERN

4th International Conference on the Initial Stages in High-Energy Nuclear Collisions 20/09/2017, Cracow, Poland

Outline

- J/ ψ production in p-Pb @ 8.16 TeV

ψ(2S) suppression in p-Pb @ 8.16 TeV (new!)

J/ψ v₂ in p-Pb @ 5.02 and 8.16 TeV (new!)

ALICE

Silicon Pixel detector (SPD) $|\eta_{lab}| < 1.4$ Primary vertex reconstruction Primary charged particles reconstructed via SPD tracklets (vertex + 2 hits in SPD layers) $< p_{T} > ~ 0.75$ GeV/c

Forward Muon spectrometer $\psi \rightarrow \mu^+\mu^ 2.5 < y_{lab} < 4$ Acceptance down to 0 p_{τ}

V0 detector

-3.7<η_{lab}<1.7 + 2.8<η_{lab}<5.1 Minimum-bias trigger Event-multiplicity selection with VOM (sum of signal from rings on both sides of IP)

20/09/2017

<u>Trigger</u>

V0 Minimum-bias Unlike-sign muon pair μ efficiency ~50 % at p_{τ} =0.5 GeV/c

Data sets

- Run1 : 5.02 TeV
- Run2 : 8.16 TeV (part taken at 5.02 TeV)
- Asymmetric beam energies
 - \rightarrow c.m.s. shifted by 0.465 in direction of proton beam
- Both beam configurations
 - p-Pb : proton towards the MUON spectrometer 2.03 < y < 3.53

- Pb-p : Pb towards the MUON spectrometer -4.46 < y < -2.96
- Integrated luminosities :

	p-Pb	Pb-p
5.02 TeV	~8.0 nb ⁻¹	~5.8 nb⁻¹
8.16 TeV	~8.7 nb ⁻¹	~12.9 nb ⁻¹

ψ(2S) suppression @ 8.16 TeV

- Strong suppression of $\psi(2S)$ wrt J/ ψ , stronger in backward direction, already seen @ 5.02 TeV
 - Formation time >> crossing time \rightarrow need final-state effects
 - Hadron gas (comovers model) ?
 - Hot medium effects ?
 - Comoving partons (CGC + ICEM model)
- R_{pPb} : no sizeable $\sqrt{s_{NN}}$ dependence, both in y and p_T
- Comovers model → a bit higher suppression @8.16 TeV wrt 5.02 TeV (due to higher hadron densities), more pronounced in backward direction
 - Data uncertainties do not allow to tell if that is the case

Backward Forward $R_{ m pPb}$ 1.8 $R_{\rm pPb}$ ALICE, Inclusive $\psi(2S) \rightarrow \mu^+\mu^-$, -4.46 < γ_{max} < -2.96 ALICE, Inclusive $\psi(2S) \rightarrow \mu^+\mu^-$, 2.03 < y_{ome} < 3.53 1.6 p-Pb, s_{NN} = 5.02 TeV (JHEP 12 (2014) 073) p-Pb, Vs_{NN}= 5.02 TeV (JHEP 12 (2014) 073) 1.4 1.4 p-Pb, \s_{NN}= 8.16 TeV (Preliminary) p-Pb, \s_NN= 8.16 TeV (Preliminary) 1.2 1.2 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 2 10 2 10 8 8 4 6 12 4 6 12 $p_{_{\rm T}}$ (GeV/c) p_{τ} (GeV/c) ALI-PREL-137875 ALI-PREL-137879 C.Cheshkov 20/09/2017

$J/\psi v_2$ in the small p-Pb system?

- Significant v_2 in central and semi-central Pb-Pb @ 5.02 TeV
 - At low p_{T}

*v*₂ inherited from recombined charm quarks, described fairly well by transport model of Rapp et al. (Nucl.Phys.A943 (2015) 147–158) and Zhuang et al. (Phys.Rev.C89 (2014) 054911)

– At high $p_{\scriptscriptstyle \mathsf{T}}$

 v_2 data > predictions in which it comes from path-length dependent suppression in QGP

- In p-Pb
 - Much less charm quarks produced $\rightarrow\,$ recombination negligible
 - Small system size \rightarrow negligible path-length dependence
 - Does J/ ψ participate in collective behaviour of p-Pb collision system ?

C.Cheshkov

Collectivity in p-Pb

 v₂>0 in two- and multiparticle correlations, clear signs of collectivity

• Mass ordering in $V_2(p_T)$

 Forward/backward muons ν₂>0 even at high p_T dominated by heavy-flavour decays

Measurement of J/ ψv_2

- Azimuthal correlations between forward/backward J/ψ and mid-rapidity charged particles
- Correlations expressed as associated SPD-tracklet yields per dimuon(J/ψ) trigger

$$Y^{ij}(M_{\mu\mu}, p_{\mathrm{T}}^{\mu\mu}, \Delta\varphi, \Delta\eta) = \frac{1}{N_{\mathrm{trig}}^{ij}(M_{\mu\mu}, p_{\mathrm{T}}^{\mu\mu})} \frac{SE^{ij}(M_{\mu\mu}, p_{\mathrm{T}}^{\mu\mu}, \Delta\varphi, \Delta\eta)}{ME^{ij}(M_{\mu\mu}, p_{\mathrm{T}}^{\mu\mu}, \Delta\varphi, \Delta\eta)}$$

i – event-multiplicity class (V0M) j – z vertex bin N_{trig} – # of trigger dimuons

- $\mathsf{SE}-\#$ of associated tracklets from same event $\mathsf{ME}-\mathsf{mixed}$ event
- Yields projected on $\Delta \phi$ in **1.5<** $\Delta \eta$ **<5.0**
- Yields per J/ ψ trigger obtained from fit of yields vs $M_{\mu\mu}$

$$\frac{S}{S+B}Y_{\mathrm{J}/\psi} + \frac{B}{S+B}Y_{B}(M_{\mu\mu})$$

S/B – signal/background from $M_{\mu\mu}$ fit Y_B – background v_2 (2nd order polynomial)

20/09/2017

C.Cheshkov

 $3 < p_T < 6 \text{ GeV/c} \rightarrow v_2 > 0$

Total (forward+backward,5.02+8.16 TeV) significance about 5σ Values comparable to the measurements in central Pb-Pb collisions

Conclusions

- J/ ψ and ψ (2S) R_{pPb} @ 8.16 TeV quite compatible with 5.02 TeV, both in y and p_T
- ψ(2S) strongly suppressed wrt J/ψ, more pronounced in backward direction
 - Implies final-state interactions, hadronic gas or mini-QGP?

• $J/\psi v_2 > 0$ observed in $3 < p_T < 6$ GeV/c

- 5σ significance

20/09/2017

- Forward and backward data compatible within (relatively large) uncertainties
- Intriguing similarity to Pb-Pb
- Origin not yet understood

