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What is hydrodynamics?

Late time effective theory of interacting theories near thermal equilibrium.

A more general definition abandons the concept of late time. Instead we just restrict the

effective theory to dynamics of conserved currents only. (This assumes that the algebra

of conserved currents is closed on the subspace of near-thermal states)

For a conserved U(1) current: ∂µ J
µ = 0

Continuity equation (charge conservation): ∂t J
0 = ~∇ · ~J

can be viewed as initial value problem for time evolution of the charge density J0 with

some initial condition J0(t = t0).

Yet, the continuity equation cannot be solved as such. We need extra inputs and that are

three functions ~J(t).

Similarly for the energy-momentum conservation: ∂µ T
µν = 0, or ∂t T

0 ν = ∇i T
i ν

T00 = ǫ – energy density of the fluid and T0i ∼ ui is the velocity of the fluid, while Tij are

missing data. Equation of state relates energy density to pressure P = Tii, thus reducing

the number of required inputs.



Constitutive Relations for U(1) current

Data have to be provided on ~J (Tij) in order to close the dynamical equations.

So, ~J has to be related to J0 (and Tij to T0j)

Linear relation (in the absence of external fields): ~J ∼ ~∇J0 (~∇ is the only vector)

Most general linear constitutive relation

~J(t, x) =

∫

t′,x′
D(t − t

′
, x − x

′
) ~∇J

0
(t

′
, x

′
) , ~J(ω, q) = D(ω, q

2
)~q J

0
(ω, q)

D is called ”Memory Function”. It contain a wealth (infinite amount) of info about

transport coefficients to be determined from the microscopic theory. It generalises the

concept of diffusion constant.

Causality: D(t − t′) ∼ θ(t − t′)

Causality is related to short time scales, which is probed by hydro evolution at early times.

Early times are important. There have been a lot of talk about early ”hydronisation”

without isotropisation. Most of the entropy is also produced at early times.

Causality constraint is a necessary UV completion of the usual late time hydrodynamics.



Constitutive Relation for Conformal Fluids

Define Πij as a traceless part of Tij (also assume Landau frame)

Π
ij
(t, x) =

∫

t′,x′
η(t−t

′
, x−x

′
)∇{i

T
0j}

(t
′
, x

′
) +

∫

t′,x′
ζ(t−t

′
, x−x

′
)∇i ∇j ∇k

T
0k
(t

′
, x

′
)

Π
ij = η(ω, q2) q{i uj}(ω, q) + ζ(ω, q2) qi qj qkuk(ω, q)

Bulk viscosity is zero

ζ is a second shear viscosity

introduced by E. Shuryak, M.L., D80 (2009) 065026 ζ = 0

Yanyan Bu and M.L., arXiv:1406.7222 (PRD), arXiv:1409.3095 (JHEP), ζ 6= 0



Non-linear constitutive relation:

~J(t, x) = D~∇J
0 + #(~∇J

0)2 + infinitely many terms

~J(t) =

∫ t

D(t − t
′
) ~∇J

0
(t

′
) dt

′

What about the low limit? We pretend to know J0 at t ≥ t0. So, we have no choice but

to limit the integral

~J(t) = ~J(t0) +

∫ t

t0

D(t − t
′
) ~∇J

0
(t

′
) dt

′

Here ~J(t0) is an initial condition for the current.

When D is not known from a microscopic theory or experiment, it has to be modelled.



Hydro Model A: Diffusion constant/Navier-Stokes

Instantaneous response

D(t − t
′, x − x

′) = D0(x − x
′) δ(t − t

′)

Then
~J(t, x) =

∫

x′
D0(x − x

′) ~∇J
0(t, x′)

If we further assume that D0 is local D0(x − x′) = D0 δ(x − x′),

~J(t, x) = D0
~∇J

0
(t, x)

which is the usual diffusive approximation. Notice that ~J(t = t0) 6= 0

For the spatial components of the energy-momentum tensor:

Π
ij
(t, x) = η0 ∇{i

u
j}
(t, x) i 6= j Navier Stokes



Hydro Model B: Relaxation time approximation

D(t − t
′, x − x

′) =
D0

τ
e
− (t−t′)/τ δ(x − x

′) , D(ω) ∼ 1

ω − i/τ

∂t
~J(t, x) =

1

τ

[

D0
~∇J

0
(t, x) − ~J(t, x) + ~J(t0, x)

]

~J(t0, x) is usually assumed to be zero.

A similar construction for Tij(t, x), ∂t Π
ij(t, x) = · · · is frequently referred to as

Israel-Stewart hydrodynamics. It reduces to NS in the limit τ → 0



Is there a ”better” model ?

M. P. Heller, R. A. Janik, M. Spalinski and P. Witaszczyk, Phys. Rev. Lett. 113, no. 26, 261601 (2014)

proposed 2-pole approximation (Model C):

D(t − t
′) = d1 e

− (t−t′)ω1 + d2 e
− (t−t′)ω2

What is the right memory function D? How to compute it from a microscopic theory?

For a holographically defined microscopic theory (not QCD), D can be computed using

the fluid-gravity correspondence.

The correct structure, more or less, is

D(t) = θ(t)

∞
∑

n=0

dn e
− tωn
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Y. Bu, M. Lublinsky and A. Sharon, JHEP 1604, 136 (2016)

Y. Bu and M. L, JHEP 1504, 136 (2015)



What about initial conditions J0(t0) and ~J(t0)? So far, we pretended that J0(t0) is

provided as an experimental input (or should be fitted to experiment). At the same time
~J(t0) is usually simply modelled.

Is it justified to treat them so differently and independently?

One option is to assume that the system emerges from far out of equilibrium and

then ”hydronises” with the initial conditions J0(t0) and ~J(t0) being random and totally

independent.

From a holographic perspective one would have to consider black-hole formation, which

is a process dual to hydronization, as a result of a collision/collapse.

many people/many papers

talks by Maximilian Attems and Jorge Casalderrey Solana



An alternative possibility is that the system ”remembers” its t < t0 history.

A way to study this is to start at t = −∞ with a system at equilibrium and turn on

an external field which would take the system not too far out of equilibrium, that is the

system all the time remains in the hydro regime

For e/m current we can turn on en external electric filed ~E.

In presence of external electric field, the constitutive relation generalises to

~J(t) =

∫ t

−∞
D(t − t

′
) ~∇J

0
(t

′
) dt

′
+

∫ t

−∞
σ̃e(t − t

′
) ~E(t

′
) dt

′

with J0(t = −∞) = 0. The last term generalises the Ohm’s law.

Switch off the external field at t = 0 and let the system relax towards equilibrium

~J(t > 0) =

∫ t

0

D(t − t
′) ~∇J

0(t′) dt′ + ~JH(t)

~JH(t) =

∫ 0

−∞
D(t − t

′) ~∇J
0(t′) dt′ +

∫ 0

−∞
σ̃e(t − t

′) ~E(t′) dt′

The ”history” current depends on time for t > 0 and it is not clear if ~JH can be rendered

into t-independent. Thus this hydro presumably cannot be solved as initial value problem.



Gradient expansion

~J(t) =

∫

t′
D(t − t

′
) ~∇J

0
(t

′
) +

∫

t′
σ̃e(t − t

′
) ~E(t

′
)

D(t − t
′
) =

∫

dω

2π
D(ω) e

−iω (t−t′)
=

∫

dω

2π
D(i∂t) e

−iω (t−t′)
= D(i∂t) δ(t − t

′
)

~J(t, x) = D(i∂t,∇2) ~∇J
0(t, x) + σe(i∂t,∇2) ~E(t, x)

Gradient (small momenta) expansion:

D(i∂t,∇2
) = D0 [1 + iτ ∂t + λ∇2

+ ....], σe(i∂t,∇2
) = σ0 [1 + iτσ ∂t + ....]

σ0 is a DC conductivity.

Another way of steering the system out of equilibrium is by magnetic field

~J(t, x) = D(i∂t,∇2) ~∇J
0(t, x) + σe(i∂t,∇2) ~E(t, x) + σm(i∂t,∇2) ~∇ × ~B(t, x)

This is the most general linear constitutive relation.



Neutral conformal fluids in a weakly curved 4d background

A way to steer a neutral fluid out of equilibrium is to shake it by an external metric

perturbation

Most general constitutive relation with weakly curved metric (hµν ∼ ui)

E. Shuryak, M.L., D80 (2009) 065026

Y. Bu and M. L, JHEP 1504, 136 (2015)

Πµν = −η∇µuν − ζ∇µ∇ν∇u+κuα
u
β
Cµανβ + ρuα∇β

Cµανβ + ξ∇α∇β
Cµανβ − θuα∇αRµν,

Cµανβ, Rµν are the Weyl and Ricci tensors of hµν.

κ(ω, q2), ρ(ω, q2), ξ(ω, q2), θ(ω, q2) - Gravitational Susceptibilities of the Fluid (GSFs).

All GSFs contribute to two-point correlators



AdS/CFT

QCD −→ N = 4 SYM (CFT). Strong coupling (and large Nc) → AdS/CFT → SUGRA

on AdS5. CFT at finite Temperature ↔ AdS Black Hole

Bulk fields (gravitons, photons, etc) propagate signals

from the horizon to the boundary,

where the hologram is captured.

The bulk acts as a highly nonlinear dispersive medium.

There is no dissipation in the bulk.

All dissipative effects take place at the horizon.



5d Geometry

5d GR with negative cosmological constant:

S =
1

16πGN

∫

d
5
x
√

−g (R + 12) ,

Einstein Equations

EMN ≡ RMN − 1

2
gMN R − 6 gMN = 0.

Schwarzschild-AdS5 geometry (ingoing Eddington-Finkelstein coordinates)

ds
2 = g

MN
dx

M
dx

N = 2dtdr − r
2
f(r)dt2 + r

2δijdx
i
dx

j,

f(r) = 1 − 1/r4. The horizon is at r = 1, the Hawking temperature is πT = 1.



5d Maxwell field

Maxwell field in Schwarzschild-AdS5 geometry (probe approximation)

S = −
∫

d
5
x
√

−g
1

4
e
2
(F

V
)MN(F

V
)
MN

+ Sc.t.

Maxwell equations

EQ
N := ∇MF

MN = 0

4 dynamical eqns EQµ = 0 → transport, EQr = 0 → current conservations.

Near the conformal boundary r = ∞ the solution is expandable in a series (Ar = 0)

Aµ(r, xα) = A
(0)
µ (xα) +

A(1)
µ (xα)

r
+

A(2)
µ (xα)

r2
+

B(2)
µ (xα)

r2
log r

−2 + O
(

log r−2

r3

)

,

The boundary current (using the holographic dictionary)

J
µ
= −η

µν
(

2A
(2)
ν + 2B

(2)
ν + η

σt
∂σF

(0)
tν

)

.



EQµ = 0 admit the most general static homogeneous solutions

Aµ = A
(0)
µ +

ρ

2r2
δµt, A

(0)
µ = const, ρ = const

The boundary theory is a static uniformly charged plasma with no external fields

J
0
= ρ, ~J = 0

Next, following the spirit of S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, (2008)

A
(0)
µ → A

(0)
µ (xα), ρ → ρ(xα).

The solution has to be amended:

Aµ(r, xα) = A
(0)
µ (xα) +

ρ(xα)

2r2
δµt + aµ(r, xα)

Solve for a (bulk-to-boundary propagator). a[A0, ρ] is linear both in A0 and ρ

Different from approaches based on two-point correlators, which impose current

conservation (on-shellness)



U(1) vector current: Diffusion and Conductivity

~J(ω,~q) = −D
(

ω, q2
)

i~q ρ(ω,~q) + σe

(

ω, q2
)

~E(ω,~q) + σm

(

ω, q2
)

i~q × ~B (ω,~q) .

D = D0 [1+ iτ ∂t + λ∇2
+....] =

1

2
+
1

8
πiω +

1

48

[

−π
2
ω

2
+ q

2
(6 log 2 − 3π)

]

+· · · ,

σe = σ0 [1 + iτσ ∂t + ....] = 1 +
log 2

2
iω +

1

24

[

π2ω2−q
2 (3π + 6 log 2)

]

+ · · · ,

σm = 0 +
1

16
iω
(

2π − π
2
+ 4 log 2

)

+ · · · .

Blue terms are new! Y. Bu, M. Lublinsky and A. Sharon, JHEP 1604, 136 (2016)

σ0
m > 0 in a pure QED plasma with one Dirac fermion at one loop level

B. B. Brandt, A. Francis, and H. B. Meyer, (2014)

σ0
m = 0 based on Boltzmann equations J. Hong and D. Teaney, (2010)







Hydrodynamics from Fluid-Gravity correspondence

h

 slowly varying BH horizon

 < T     (x) >   
µν

5d GR with negative cosmological constant:

S =
1

16πGN

∫

d
5
x
√

−g (R + 12) ,

Einstein Equations

EMN ≡ RMN − 1

2
gMN R − 6 gMN = 0.

Solution: Boosted Black Brane in asymptotic AdS5

ds
2
= −2uµdx

µ
dr − r

2
f (br) uµuνdx

µ
dx

ν
+ r

2Pµνdx
µ
dx

ν
,

f(r) = 1 − 1/r4 and Pµν = ηµν + uµuν

Hawking temperature

T =
1

πb
,



S. Bhattacharyya, V. E Hubeny, S. Minwalla, M. Rangamani, JHEP 0802:045, (2008):

Promote ui and b into a slowly varying functions of boundary coordinates xα

ds
2
= −2uµ(x

α
)dx

µ
dr − r

2
f (b(x

α
)r) uµ(x

α
)uν(x

α
)dx

µ
dx

ν
+ r

2Pµν(x
α
)dx

µ
dx

ν
,

Use gradient expansion of the fields u(x) = u0 + δx∇u and b(x) = b + δx∇b to set

up a perturbative procedure

The stress tensor for the dual fluid

T
µ
ν = lim

r→∞
T̃

µ
ν(r) ; T̃

µ
ν(r) ≡ r

4

(

Kµ
ν − Kγ

µ
ν + 3γ

µ
ν − 1

2
G

µ
ν

)

,

T
µν

= T
µν
ideal + Π

µν
NS + τR (u∇)Π

µν
NS + O[ (∇ u)

2
]

P. Kovtun, G. Policastro, D. Son, A. Starinets (2001-2004)

η0

s
=

1

4π
, τR = 2 − log(2)

R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, M. A. Stephanov

JHEP 0804, 100 (2008)

M. P. Heller and R. A. Janik, Phys. Rev. D 76, 025027 (2007)



We do it somewhat differently, linearizing in the velocity amplitude

uµ(x
α) = (−1, ǫβi(x

α)) + O(ǫ2), b(xα) = b0 + ǫb1(x
α) + O(ǫ2),

”seed” metric, i.e., a linearized version of the BH metric

ds
2

seed = 2drdv−r
2
f(r)dv2+r

2
d~x2−ǫ

[

2βi(x
α)drdxi +

2

r2
βi(x

α)dvdxi +
4

r2
b1(x

α)dv2

]

+O(ǫ2),

ds
2
= ds

2

seed + ds
2

corr[β] gauge fix grr = 0, grµ ∝ uµ

ds
2

corr = ǫ

(

−3h drdv +
k

r2
dv

2
+ r

2
h d~x

2
+

2

r2
ji dvdx

i
+ r

2
αij dx

i
dx

j

)

h[β], k[β], j[β], α[β] are to be found by solving the Einstein equations.

Boundary cond: no singularities

h < O(r
0
), k < O(r

4
), ji < O(r

4
), αij < O(r

0
).



Einstein equations for the metric corrections

Dynamical equations:

Err = 0 : 5 ∂rh + r∂2
rh = 0 .

Erv = 0 : 3 r2∂rk = 6 r4 ∂β + r3 ∂v∂β − 2 ∂j − r ∂r∂j − r3 ∂i∂jαij

Eri = 0 : −∂2
r ji =

(

∂2βi − ∂i∂β
)

+ 3r ∂vβi − 3
r
∂rji + r2∂r∂jαij.

Eij = 0 : (r7 − r
3)∂2

rαij + (5r6 − r
2)∂rαij + 2r

5∂v∂rαij + 3r
4∂vαij

+r
3

{

∂2αij −
(

∂i∂kαjk + ∂j∂kαik −
2

3
δij∂k∂lαkl

)}

+

(

∂ijj + ∂jji −
2

3
δij∂j

)

− r∂r

(

∂ijj + ∂jji −
2

3
δij∂j

)

+3r
4

(

∂iβj + ∂jβi −
2

3
δij∂β

)

+ r
3
∂v

(

∂iβj + ∂jβi −
2

3
δij∂β

)

= 0 .

Constraint equations

Evv = 0 and Evi = 0 −→ ∂µT
µν

= 0



Results from the Fluid/Gravity correspondence

Πµν = −η∇µuν − ζ∇µ∇ν∇u+κuα
u
β
Cµανβ + ρuα∇β

Cµανβ + ξ∇α∇β
Cµανβ − θuα∇αRµν,

Analytical results in the hydrodynamic regime ω, q ≪ 1 (πT = 1):

η(ω, q
2
) = 2 + (2 − ln 2)iω − 1

4
q
2 − 1

24

[

6π − π
2
+ 12

(

2 − 3 ln 2 + ln
2
2
)]

ω
2
+ · · ·

ζ(ω, q
2
) =

1

12
(5 − π − 2 ln 2) + · · · Blue terms are new!

κ = 2 +
1

4
(5 + π − 6 log 2) iω + · · · , ρ = 2 + · · · , ξ = ln 2 − 1

2
+ · · · , θ =

3

2
ζ.

R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, JHEP 0804, 100 (2008)

Modified sound dispersion:

ω = ± 1√
3
q − i

6
q
2 ± 1

24
√
3
(3 − 2 ln 2) q

3
+

i

288

(

8 − π2

3
+ 4 ln

2
2 − 4 ln 2

)

q
4
+
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• Real parts of the viscosities are decreasing functions of momenta. Oscillations are

consistent with the expectations about the viscosities have infinitely many complex

poles.

• Imaginary parts have a clear maximum near ω ∼ 2, introducing a (new?) transition

scale.

• Viscosity vanish at large momenta, which is what is required to restore causality.

• ζ is always subleading vs η.



Conclusions

• Memory function is an important ingredient of causal relativistic hydrodynamics.

Fluid-gravity correspondence provides a calculational framework to rigorously address

transports In QFT, including all order resummation. Unfortunately not in QCD ...

• All order dissipative terms of a weakly perturbed conformal fluid are fully accounted

for by two shear viscosity functions η(ω, q2) and ζ(ω, q2). We propose to use all-order

viscosity functions for hydro simulations as an improvement beyond the Israel-Stewart

formalism.

• For a weakly curved background space, there are additional four transport functions

called Gravitational Susceptibilities of the Fluid.

• An off-shell constitutive relation for U(1) current consists of a momenta-dependent

diffusion term and two conductivities. Certain universality between dissipative transport

coefficients η and D is observed.

• At large momenta, the effective viscosity (diffusion constant) is a decreasing function

of both frequency and momentum. The corresponding memory functions have support

in the past only, the behaviour consistent with causality restoration.


