Recent results of the azimuthal anisotropic flow measurements from STAR experiment

Niseem Magdy
Stony Brook University
For the STAR Collaboration

niseem.abdelrahman@stonybrook.edu
Data Studied

- Collected data for Au+Au at $\sqrt{s_{NN}} = 200 - 7.7 \text{ GeV}$
Collected data for Au+Au at $\sqrt{s_{NN}} = 200 - 7.7 \text{ GeV}$

Collected data for different systems at $\sqrt{s_{NN}} \sim 200$
Data Studied

- Collected data for Au+Au at $\sqrt{S_{NN}} = 200 - 7.7$ GeV
- Collected data for different systems at $\sqrt{S_{NN}} \sim 200$

STAR Detector at RHIC

- TPC detector mainly get used in the current analysis
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_r(\Delta \varphi = \varphi_a - \varphi_b)$,

$$C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \quad \text{and} \quad \nu_{ab}^n = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}$$
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_r(\Delta \varphi = \varphi_a - \varphi_b)$,

$$C_r(\Delta \varphi) = dN/d\Delta \varphi \text{ and } v_n^{ab} = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}$$

Flow
Non-flow
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_r(\Delta \varphi = \varphi_a - \varphi_b)$,

$$C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi}$$

and $v_{n}^{ab} = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}$

$n > 1$

$v_{n}^{ab} = v_{n}^{a} v_{n}^{b} + \delta_{short}$

$n = 1$

$v_{1}^{ab} = v_{1}^{a} v_{1}^{b} + \delta_{long}$

Flow

Non-flow
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_r(\Delta \varphi = \varphi_a - \varphi_b)$:

$$C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \quad \text{and} \quad \nu_n^{ab} = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}$$

$n > 1$

$$\nu_n^{ab} = \nu_n^a \nu_n^b + \delta_{\text{short}}$$

$n = 1$

$$\nu_1^{ab} = \nu_1^a \nu_1^b + \delta_{\text{long}}$$

Flow

Non-flow

Short – range

CMS PbPb $\sqrt{s_{NN}} = 2.76$ TeV

$L_{int} = 120 \mu b^{-1}$

0-0.2% centrality
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function \(C_r(\Delta \varphi = \varphi_a - \varphi_b) \),

\[
C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \quad \text{and} \quad v_n^{ab} = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}
\]

\(n > 1 \)

\[v_n^{ab} = v_n^a v_n^b + \delta_{\text{short}} \]

\(n = 1 \)

\[v_1^{ab} = v_1^a v_1^b + \delta_{\text{long}} \]
Azimuthal anisotropy measurements

Two-particle correlation function $C_r(\Delta \varphi = \varphi_a - \varphi_b)$,

$$C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \quad \text{and} \quad \nu_n^{ab} = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}$$

- $n > 1$
 $$\nu_n^{ab} = \nu_n^a \nu_n^b + \delta_{\text{short}}$$
- $n = 1$
 $$\nu_1^{ab} = \nu_1^a \nu_1^b + \delta_{\text{long}}$$

Flow

Non-flow

Short-range

HBT

Decay

Charge
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_r(\Delta \varphi = \varphi_a - \varphi_b)$,

$$C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \quad \text{and} \quad v_n^{ab} = \frac{\Sigma_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\Sigma_{\Delta \varphi} C_r(\Delta \varphi)}$$

$n > 1$

$v_n^{ab} = v_n^a v_n^b + \delta_{\text{short}}$

$n = 1$

$v_1^{ab} = v_1^a v_1^b + \delta_{\text{long}}$

Flow

Non-flow

Long – range

Short – range

HBT

Decay

Charge
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_r(\Delta \varphi = \varphi_a - \varphi_b)$,

$$C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi}$$ \text{ and } \nu_n^{ab} = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}$$

$$n > 1$$

$$\nu_n^{ab} = \nu_n^a \nu_n^b + \delta_{\text{short}}$$

$$n = 1$$

$$\nu_1^{ab} = \nu_1^a \nu_1^b + \delta_{\text{long}}$$

Flow

Non-flow

Long – range

Short – range

Momentum Conservation

HBT

Decay

Charge
Azimuthal anisotropy measurements

Two-particle correlation function \(C_r(\Delta \varphi = \varphi_a - \varphi_b) \),

\[
C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \quad \text{and} \quad v_n^{ab} = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}
\]

- \(n > 1 \)
 \[v_n^{ab} = v_n^a v_n^b + \delta_{\text{short}} \]
- \(n = 1 \)
 \[v_1^{ab} = v_1^a v_1^b + \delta_{\text{long}} \]

Flow

Non-flow

Non-flow suppression is needed
Short-range non-flow effect get reduced using $|\Delta \eta| > 0.7$ cut
Long-range non-flow suppression

\[\nu^a_b = \nu^a_1 \nu^b_1 + \delta_{long} \quad n = 1 \]

\[\nu^1_{11}(p^a_T, p^b_T) = \nu^e_{1}(p^a_T)\nu^e_{1}(p^b_T) - C \; p^a_T \; p^b_T \]

\[C \propto \langle \text{Mult} \rangle^{-1} \]
Long-range non-flow suppression

\[v_{11}^{ab} = v_1^a v_1^b + \delta_{long} \quad n = 1 \]

\[v_{11}(p_T^a, p_T^b) = v_1^{even}(p_T^a)v_1^{even}(p_T^b) - C \, p_T^a p_T^b \]

\[v_{11} \text{ in Eq}(1) \text{ represents NxM matrix which we fit with N+1 parameters} \]
Long-range non-flow suppression

\[v_{1}^{ab} = v_{1}^{a} v_{1}^{b} + \delta_{\text{long}} \quad n = 1 \]

\[v_{11}(p_{T}^{a}, p_{T}^{b}) = v_{1}^{\text{even}}(p_{T}^{a}) v_{1}^{\text{even}}(p_{T}^{b}) - C \, p_{T}^{a} p_{T}^{b} \]

\(C \propto (\langle \text{Mult} \rangle)^{-1} \)

\(v_{11} \) in Eq(1) represents NxM matrix which we fit with N+1 parameters

\[\times 10^{-3} \]

- (a) Au+Au
 - 0-5%
 - 200 GeV
 - \(0.2 < p_{T}^{a} < 0.6 \) (GeV/c)
- (b) 1.0 < \(p_{T}^{a} < 1.4 \) (GeV/c)
- (c) 1.4 < \(p_{T}^{a} < 1.8 \) (GeV/c)
- (d) 1.8 < \(p_{T}^{a} < 2.6 \) (GeV/c)

\[\chi^2 \]

\[\text{ndf} \]

\[\sim 1.1 \]

Good simultaneous fit \(\left(\frac{\chi^2}{\text{ndf}} \sim 1.1 \right) \) obtained with Eq. 1
Long-range non-flow suppression

\[\nu_{1}^{ab} = \nu_{1}^{a} \nu_{1}^{b} + \delta_{\text{long}} \quad n = 1 \]

\[\nu_{11}(p_{T}^{a}, p_{T}^{b}) = \nu_{1}^{\text{even}}(p_{T}^{a})\nu_{1}^{\text{even}}(p_{T}^{b}) - c \cdot p_{T}^{a} p_{T}^{b} \]

\[C \propto (\langle \text{Mult} \rangle)^{-1} \]

\(\nu_{11} \) in Eq(1) represents NxM matrix which we fit with N+1 parameters.

- Good simultaneous fit \(\left(\frac{\chi^{2}}{n_{\text{df}}} \sim 1.1 \right) \) obtained with Eq. 1
- \(\nu_{11} \) characteristic behavior gives a good constraint for \(\nu_{1}^{\text{even}}(p_{T}) \) extraction.
Long-range non-flow suppression

\[v_{11}(p_T^a, p_T^b) = v_{1}^{even}(p_T^a)v_{1}^{even}(p_T^b) - C p_T^a p_T^b \]

The extracted \(v_{1}^{even}(p_T) \) and the momentum conservation parameter \(C \) at \(\sqrt{s_{NN}} = 200 \)

\[\eta < 1 \text{ and } |\Delta\eta| > 0.7 \]

Fit to \(v_{1}^{even}(p_T) \) data shows \(v_{1}^{even}(p_T) \) centrality dependent

The characteristic behavior of \(v_{1}^{even}(p_T) \) shows a weak centrality dependence
Long-range non-flow suppression

$$v_{11}(p_T^a, p_T^b) = v_1^{\text{even}}(p_T^a)v_1^{\text{even}}(p_T^b) - C p_T^a p_T^b$$

The extracted $v_1^{\text{even}}(p_T)$ and the momentum conservation parameter C at $\sqrt{s_{NN}} = 200$

- Fit to $v_1^{\text{even}}(p_T)$ data shows $v_1^{\text{even}}(p_T)$ centrality dependent

- The characteristic behavior of $v_1^{\text{even}}(p_T)$ shows a weak centrality dependence

- The momentum conservation parameter C scales as $<\text{Mult}>^{-1}$
Non-flow suppression

- η gap between particles in each pair used to suppress the short-range non-flow
Non-flow suppression

- η gap between particles in each pair used to suppress the short-range non-flow
- Simultaneous fit used to suppress long-range non-flow associated with momentum conservation
Non-flow suppression

- Long – range
- Short – range
- Momentum Conservation
- HBT
- Decay
- Di–jets

- η gap between particles in each pair used to suppress the short-range non-flow
- Simultaneous fit used to suppress long-range non-flow associated with momentum conservation
- Multi-particle correlations also used to further suppress non-flow
Multi-particle correlations and the non-flow suppression

\[c_2\{4\} \equiv \langle 4 \rangle - 2\langle 2 \rangle^2 \]

In the subevent method, particles are correlated across all subevents (long-range)

\[\langle 4 \rangle \equiv \left\langle e^{i\pi(\phi_i + \phi_j - \phi_k - \phi_l)} \right\rangle \]

Short-range non-flow dominate
Multi-particle correlations and the non-flow suppression

\[c_2\{4\} \equiv \langle 4 \rangle - 2\langle 2 \rangle^2 \]

In the subevent method, particles are correlated across all subevents (long-range).

Three subevent cumulant can further suppress away-side jet contribution

Short-range non-flow dominate

\[\langle 4 \rangle \equiv \left\langle e^{in(\phi_i + \phi_j - \phi_k - \phi_l)} \right\rangle \]

Long-range non-flow dominate

\[\langle 4 \rangle \equiv \left\langle e^{in(\phi_i + \phi_j - \phi_k - \phi_l)} \right\rangle \]

arXiv: 1701.03830
Multi-particle correlations and the non-flow suppression

\[c_2 \{4\} \equiv \langle 4 \rangle - 2 \langle 2 \rangle^2 \]

In the subevent method, particles are correlated across all subevents (long-range)

Three subevent cumulant can further suppress away-side jet contribution

Both \(\langle 4 \rangle \) and \(2 \langle 2 \rangle^2 \) are much smaller with subevent

Subevent cumulant measures long-range collectivity.

Short-range non-flow dominate

\[\langle 4 \rangle \equiv \left\{ e^{in(\phi_i+\phi_j-\phi_k-\phi_l)} \right\} \]

Long-range non-flow dominate

\[\langle 4 \rangle \equiv \left\{ e^{in(\phi_i+\phi_j-\phi_k-\phi_l)} \right\} \]

arXiv: 1701.03830
Results

Au+Au Beam Energy Scan

\[\nu_n(\eta) \]

\[\nu_n(\sqrt{s_{NN}}) \]
Pseudorapidity dependence of $v_{n>1}$

The extracted $v_{n>1}(\eta)$ at all BES energies

$|\eta| < 1$ and $|\Delta\eta| > 0.7$

$0.2 < p_T < 4 \text{ GeV/c}$

$\triangleright v_n(\eta)$ has similar trends for different beam energies.

$\triangleright v_n(\eta)$ decreases with harmonic order n.
Pseudorapidity dependence of $\nu_{n>1}$

The extracted $\nu_{n>1}(\eta)$

- $|\eta| < 1$ and $|\Delta\eta| > 0.7$
- $0.2 < p_T < 4$ GeV/c

$\nu_n(\eta)$ has similar trends for different beam energies.

$\nu_n(\eta)$ decreases with harmonic order n.
Longitudinal decorrelation of v_2 in Au+Au 200 GeV

\[r_n(\eta) = \frac{\langle v_n(-\eta)v^*_n(\eta_{\text{ref}}) \rangle}{\langle v_n(\eta)v^*_n(\eta_{\text{ref}}) \rangle} \]

- $r_n(\eta)$ decrease linearly for different centrality studied
Longitudinal decorrelation of v_2 in Au+Au 200 GeV

$$r_n(\eta) = \frac{\langle v_n(-\eta)v_n^*(\eta_{\text{ref}}) \rangle}{\langle v_n(\eta)v_n^*(\eta_{\text{ref}}) \rangle}$$

- $r_n(\eta)$ decrease linearly for different centrality studied

- The decorrelation effect gets stronger as the collision become more peripheral

- More information will be given today by Maowu Nie
Beam-energy dependence of $v_{n>1}$

The extracted $v_{n>1}$ vs $\sqrt{s_{NN}}$ for TPC($|\eta| < 1$) and FTPC($2.5 < |\eta| < 4$)

- At mid and forward rapidity;
 - $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.
 - $v_n(\sqrt{s_{NN}})$ decreases with harmonic order n (viscous effects).
Summary-1

- η gap between particles in each pair used to suppress the short-range non-flow
Summary-1

- η gap between particles in each pair used to suppress the short-range non-flow
- Simultaneous fit used to suppress long-range non-flow associated with momentum conservation
Summary-1

- η gap between particles in each pair used to suppress the short-range non-flow
- Simultaneous fit used to suppress long-range non-flow associated with momentum conservation
- The longitudinal decorrelation of v_2 was observed for Au+Au at 200 GeV
Summary-1

- η gap between particles in each pair used to suppress the short-range non-flow

- Simultaneous fit used to suppress long-range non-flow associated with momentum conservation

- The longitudinal decorrelation of v_2 was observed for Au+Au at 200 GeV

- At mid and forward rapidity;
 - $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.
 - $v_n(\sqrt{s_{NN}})$ decreases with harmonic order n (viscous effects).
Collectivity in small systems

$\nu_n(p_T)$

$\nu_n\{2,4\}(N_{ch})$
Collectivity in small systems

- The correlation function $C(\Delta \phi)$ for all systems at one $\langle N_{ch} \rangle$ value
- $c_2\{4\}$ vs $\langle N_{ch} \rangle$ for 4 systems

$C(\Delta \phi)$ shows similar trend for all systems

$c_2\{4\}$ shows negative value for different systems
\(\nu_n \) measurements for different systems are sensitive to system shape (\(\varepsilon_n \)), dimensionless size (\(RT \)) and transport coefficients \(\left(\frac{\eta}{s}, \frac{\zeta}{s}, \ldots \right) \).
Acoustic ansatz

- ν_n measurements for different systems are sensitive to system shape (ε_n), dimensionless size (RT) and transport coefficients ($\frac{\eta}{s}$, $\frac{\zeta}{s}$, ...).

$$\frac{\nu_n}{\varepsilon_n} \propto e^{-A \left(\frac{\eta}{s} \frac{n^2}{RT} \right)}$$

A is a constant
\[\nu_n/\varepsilon_n \propto e^{-A\left(\frac{n}{s} \frac{n^2}{RT}\right)} \]

S \sim (RT)^3 \sim \langle N_{Ch} \rangle \text{ then } RT \sim \langle N_{Ch} \rangle^{1/3}

\[\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -A \left(\frac{n}{s} \right) \langle N_{Ch} \rangle^{-1/3} \]

\(A \) is a constant
\(\nu_n \) measurements for different systems are sensitive to system shape (\(\varepsilon_n \)), dimensionless size (\(RT \)) and transport coefficients \((\frac{\eta}{s}, \frac{\zeta}{s}, \ldots) \).

\[
\frac{\nu_n}{\varepsilon_n} \propto e^{-A \left(\frac{\eta n^2}{RT} \right)}
\]

\(A \) is a constant

\[
S \sim (RT)^3 \sim \langle N_{Ch} \rangle \text{ then } RT \sim \langle N_{Ch} \rangle^{1/3}
\]

\[
\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -A \left(\frac{\eta}{s} \right) \langle N_{Ch} \rangle^{-1/3}
\]

At the same \(\frac{\eta}{s} \) and \(\langle N_{Ch} \rangle^{-1/3} \) driven by

\[
\nu_n \quad \text{driven by} \quad \varepsilon_n + \ldots
\]
\(\nu_n \) measurements for different systems are sensitive to system shape (\(\varepsilon_n \)), dimensionless size (\(RT \)) and transport coefficients (\(\left(\frac{n}{s}, \frac{\zeta}{s}, \ldots \right) \)).

\[
\frac{\nu_n}{\varepsilon_n} \propto e^{-A \left(\frac{n}{s} \frac{n^2}{RT} \right)}
\]

\(A \) is a constant

\[
S \sim (RT)^3 \sim \langle N_{Ch} \rangle \text{ then } RT \sim \langle N_{Ch} \rangle^{1/3}
\]

\[
\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -A \left(\frac{n}{s} \right) \langle N_{Ch} \rangle^{-1/3}
\]

Odd Harmonic \(\nu_3 \)

At the same \(\frac{n}{s} \) and \(\langle N_{Ch} \rangle^{-1/3} \)

\(\nu_n \) driven by \(\varepsilon_n + \ldots \)

\[
\varepsilon_3 \propto \frac{1}{\sqrt{N}}
\]

References

- PRC 84, 034908 (2011) P. Staig and E. Shuryak.
- PRC 88, 044915 (2013) E. Shuryak and I. Zahed
ν_n measurements for different systems are sensitive to system shape (ϵ_n), dimensionless size (RT) and transport coefficients ($\frac{\eta}{s}, \frac{\zeta}{s}, \ldots$).

\[
\frac{\nu_n}{\epsilon_n} \propto e^{-A \left(\frac{\eta}{s} \frac{n^2}{RT} \right)}
\]

$S \sim (RT)^3 \sim \langle N_{Ch} \rangle$ then $RT \sim \langle N_{Ch} \rangle^{1/3}$

\[
\ln \left(\frac{\nu_n}{\epsilon_n} \right) \propto -A \left(\frac{\eta}{s} \right) \langle N_{Ch} \rangle^{-1/3}
\]

Even Harmonic ν_2

ϵ_2 scaling is needed

At the same $\frac{\eta}{s}$ and $\langle N_{Ch} \rangle^{-1/3}$

ν_n driven by $\epsilon_n + \ldots$

Odd Harmonic ν_3

$\epsilon_3 \propto \frac{1}{\sqrt{N}}$
- \(\nu_n \) measurements for different systems are sensitive to system shape (\(\varepsilon_n \)), dimensionless size (\(RT \)) and transport coefficients (\(\frac{\eta}{s}, \frac{\zeta}{s}, ... \)).

\[
\frac{\nu_n}{\varepsilon_n} \propto e^{-A\left(\frac{\eta}{s} \frac{n^2}{RT}\right)}
\]

\(A \) is a constant.

- Even Harmonic \(\nu_2 \)
 - \(\varepsilon_2 \) scaling is needed

At the same \(\frac{\eta}{s} \) and \(\langle N_{Ch} \rangle^{-1/3} \)

\(\nu_n \) driven by \(\varepsilon_n + ... \)

- Odd Harmonic \(\nu_3 \)
 - \(\varepsilon_3 \propto \frac{1}{\sqrt{N}} \)

Expectations

- \(\nu_{even} \) and \(\nu_3 \) are system independent

- \(\nu_2 \) is system dependent
v_n for large systems ($A + B$)

v_n vs p_T at fixed $\langle N_{Ch} \rangle = 270$

$\ln \left(\frac{v_n}{\varepsilon_n} \right) \propto -A (\eta/s) \langle N_{Ch} \rangle^{-1/3}$

- Odd harmonics are system independent.
- Even harmonics are system dependent, with weak system dependence for the higher harmonics.

$|\eta| < 1$ and $|\Delta\eta| > 0.7$
v_n for large systems ($A + B$)

$|\eta| < 1$ and $|\Delta \eta| > 0.7$

v_n vs $\langle N_{Ch} \rangle$ at fixed $p_T[0.2:4 \text{ GeV/c}]$

\[\ln \left(\frac{v_n}{\varepsilon_n} \right) \propto -A \left(\frac{\eta}{s} \right) \langle N_{Ch} \rangle^{-1/3} \]

- Odd harmonics are system independent.
- Even harmonics are system dependent, with weak system dependence for the higher harmonics.
\(\nu_n \) for different systems

\[
\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -A \left(\frac{\eta}{s} \right) \langle N_{ch} \rangle^{-1/3}
\]

\(\nu_1^{\text{even}} \) and \(\nu_3 \) vs \(p_T \) at different \(\langle N_{ch} \rangle \) for all systems

\(\nu_1^{\text{even}} \) and \(\nu_3 \) show similar trends and magnitudes for all systems.

\(\nu_1^{\text{even}} \) and \(\nu_3 \) are system independent.
ν_n for different systems

\[
\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -A \left(\frac{\eta}{s} \right) (N_{ch})^{-1/3}
\]

ν_{1}^{even} and ν_3 vs $\langle N_{ch} \rangle$ for all systems

ν_{1}^{even} and ν_3 show similar trends and magnitudes for all systems.

ν_{1}^{even} and ν_3 are system independent.
\(\nu_n \) for different systems

\[
\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -A \left(\frac{\eta}{s} \right) \langle N_{Ch} \rangle^{-1/3}
\]

\(\nu_2 \) vs \(p_T \) at different \(\langle N_{Ch} \rangle \) for all systems

\(\langle N_{Ch} \rangle = 140 \)

\(\langle N_{Ch} \rangle = 70 \)

\(\langle N_{ch} \rangle \sim 25 \)

\[\Rightarrow \nu_2 \text{ is system dependent (shape).} \]

\[\Rightarrow \frac{\nu_2}{\varepsilon_2} (p_T) \text{ for all systems scales to a single curve.} \]
ν_n for different systems

$$\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -A \frac{\eta/s}{\langle N_{Ch} \rangle}^{-1/3}$$

ν_2 vs $\langle N_{Ch} \rangle$ for all systems

- ν_2 show similar trends but different magnitudes for different systems.
- ν_2 is system dependent (shape).

$|\eta| < 1$ and $|\Delta \eta| > 0.7$
\(\nu_n \) for different systems

\[
\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -A \left(\frac{\eta}{s} \right) \langle N_{ch} \rangle^{-1/3}
\]

\[
\ln \left(\frac{\nu_2}{\varepsilon_2} \right) \text{ vs } \langle N_{ch} \rangle^{-1/3} \text{ for all systems}
\]

\(\frac{\nu_2}{\varepsilon_2} \) for all systems scales to a single curve.

\(\frac{\nu_2}{\varepsilon_2} \) for all systems scales to a single curve.

Similar slopes implies similar viscous coefficient (\(A \eta/s \)) for all systems.
Conclusion

Comprehensive set of STAR measurements presented for $\nu_n(\eta, p_T, \langle N_{ch} \rangle)$ for several collision systems/energies.

- Non-flow suppression
 - $\Delta \eta$ cut used to suppress the short range non-flow
 - $c_2\{4\}$ shows negative value for all presented systems.
Conclusion

Comprehensive set of STAR measurements presented for $v_n(\eta, p_T, \langle N_{ch} \rangle)$ for several collision systems/energies.

- Non-flow suppression
 - $\Delta \eta$ cut used to suppress the short range non-flow
 - $c_2\{4\}$ shows negative value for all presented systems.

- Scaling the system size;
 - The odd harmonics are system independent
Conclusion

Comprehensive set of STAR measurements presented for $v_n(\eta, p_T, \langle N_{ch} \rangle)$ for several collision systems/energies.

- **Non-flow suppression**
 - $\Delta \eta$ cut used to suppress the short range non-flow
 - $c_2\{4\}$ shows negative value for all presented systems.

- **Scaling the system size;**
 - The odd harmonics are system independent
 - v_2 is system dependent
Conclusion

Comprehensive set of STAR measurements presented for $v_n(\eta, p_T, \langle N_{ch} \rangle)$ for several collision systems/energies.

- Non-flow suppression
 - $\Delta \eta$ cut used to suppress the short range non-flow
 - $c_2\{4\}$ shows negative value for all presented systems.

- Scaling the system size;
 - The odd harmonics are system independent
 - v_2 is system dependent
 - $\frac{v_2}{\varepsilon_2}$ for all systems scaled onto one curve to $\sim 10\%$ in slope
Conclusion

Comprehensive set of STAR measurements presented for $v_n(\eta, p_T, \langle N_{ch} \rangle)$ for several collision systems/energies.

- **Non-flow suppression**
 - $\Delta \eta$ cut used to suppress the short range non-flow
 - $c_2\{4\}$ shows negative value for all presented systems.

- **Scaling the system size;**
 - The odd harmonics are system independent
 - v_2 is system dependent
 - v_2/ε_2 for all systems scaled onto one curve to \sim10% in slope

At the same energy, the scaling features suggest similar viscous coefficient ($A \frac{\eta}{s}$) for different systems.