Boson+Jet Correlation and Boson-Tagged Jet Substructure in pp and PbPb collisions at 5.02 TeV with CMS

Austin Baty (MIT)

on behalf of the CMS Collaboration

Initial Stages 2017 September 20th Polish Academy of Arts and Sciences Kraków, Poland

Introduction

CMS

0.35 - Preliminarv

0.3

0.25

0.2

0.15

0.1

0.05

0

Event fraction

- Jet quenching in PbPb collisions at LHC has been firmly established using dijets
- Examined in detail using inclusive jet fragmentation function

PLB 712 (2012) 176-197

 $Ldt = 150 \,\mu b^{-1}$

PYTHIA+HYDJET

PbPb **√**s_№ = 2.76 TeV

 $120 < p_{_{T\,1}} < 150 \text{ GeV/c}$

0.6

0.8

- Information on jet longitudinal substructure
- Initial energy of quenched jet can't be precisely determined in dijet or inclusive jet events

9/20/20

ſ٦`

0.2

0.4

0.3

0.2

0.1

Event Fraction

- CMS

Introduction (II)

- Boson-jet events allow clean tag of initial parton energy
 - High statistics analysis possible with LHC Run 2 data

9/20/2017

Boson Reconstruction

• $|\eta_{v}| < 1.44$

Jet Reconstruction

- Jet cuts for all results shown here:
 - anti- k_{T} , R=0.3
 - p_{T}^{jet} > 30 GeV/c
 - |η_{jet}| < 1.6
 - Δφ(boson, jet) > 7π /8
- Smear the pp to match the PbPb jet energy resolution:

Z + jet

PRL 119 (2017) 082301

- Per-Z yield of Z-jet pairs calculated vs. $X_{jZ} = p_T^{jet}/p_T^{Z}$
- Shift to lower values observed in X_{iZ} vs. pp reference

Z + jet

- Per-Z yield of Z-jet pairs calculated vs. $X_{jZ} = p_T^{jet}/p_T^{-Z}$
- Shift to lower values observed in X_{iZ} vs. pp reference
 - <X_{iZ}> is ~10% lower in PbPb than in pp

Z + jet

 γ + jet: $x_{i\nu}$

- Strong shift in X_{iv} seen in 0-30% PbPb relative to pp for 5 photon p_T bins
- Stronger quenching in 0-30% events compared to 30-100%
- Dominant systematic uncertainty: jet energy scale
 - Followed by jet energy resolution and photon purity

CMS-HIN-16-002

γ + jet: <x_{iv}> and R_{iv}

- Average X_{iv} similar to values seen in Z-jet
- Peripheral points compatible with pp
- Compared to pp, central PbPb values consistently lower for large photon p_T

γ + jet: $\langle x_{ij} \rangle$ and R

7π \s_{NN} = 5.02 TeV 1.1_E PbPb 404 ub⁻¹, pp 25.8 pb⁻¹ $\Delta \phi$ CMS PbPb 30 - 100% 1.05 Preliminary o pp (smeared) ŏ 1 0 - 30% 0.95 0 anti-k_T Jet R = 0.3 $p_{-}^{\text{Jet}} > 30 \text{ GeV/c}$ 0.9 ^ ☆ 0.85 0 η^{Jet} < 1.6 0 0.8 ¢ 0.75 0.7 0.65 0.6 100 110 50 40 50 60 80 90 60 70 80 90 100 110 120 70 p_{\perp}^{γ} (GeV/c) p_{τ}^{γ} (GeV/c) 7π √s_{NN} = 5.02 TeV PbPb 404 µb⁻, pp 25.8 pb⁻ CMS 0.9 Preliminary 0.8 PbPb 0.7 pp (smeared) 0.6 در^ج 0.5 0 0.4 0 - 30% 30 - 100% anti- k_{τ} Jet R = 0.3 0 0.3 p_____ ⁱ > 30 GeV/c 0.2 $|\eta^{\text{Jet}}| < 1.6$ 0.1 0 90 50 60 70 80 90 100 110 120 50 60 70 80 100 110 p_{τ}^{γ} (GeV/c) p_{\perp}^{γ} (GeV/c) CMS-HIN-16-002

9/20/20

- Average X_{iν} similar to values seen in Z-jet
- Peripheral points compatible with pp •
- Compared to pp, central PbPb values consistently lower for large photon p_{τ}

- Central PbPb R_{iv} significantly lower than pp for all photon p_{T} bins
- Ordering of 0-30% < 30-100% < pp

Similar story as Z-jet, but more differential!

Austin Baty

Fragmentation Function Definition

- Photon-tagged fragmentation function:
 - Per-jet yield of charged particles in the jet cone vs two variables:

Background Subtraction

- Underlying event background removed with Min Bias event mixing
 - First remove background tracks to get signal tracks

Background Subtraction

- Underlying event background removed with Min Bias event mixing
 - First remove background tracks to get signal tracks
- Some jets are still due to UE jets or fluctuations
 - Repeat same procedure in MB events
- Subtract background jet contribution to get signal jets w/ signal tracks

Fragmentation Function vs ξ^{jet}

Fragmentation Function vs ξ^{γ}

Conclusions

- CMS has measurements of X_{iV} in two production channels
 - Jet p_{τ} reduction on the order of ~10% larger in central PbPb than in pp
 - Average number of jets > 30 GeV matched to a boson in central PbPb reduced vs. pp

Cent. 0 - 10%

0

N^{et} dN^{trk}

- First measurement of photon-tagged jet fragmentation function
 - Small enhancement at high ξ^{jet} observed
 - Same enhancement much more significant vs ξ^{γ}
- At the start of an exciting new era of jet measurements

Backup

Acoplanarity

Z-jet theory comparisons

Z-jet vs photon jet

Z-jet vs photon jet

Photon-jet vs theory

Photon-jet vs theory

Frag. Function Kinematics

Austin Baty

Mir