
Angular Momentum And Early 
Time Gluon Fields

RAINER J FRIES

TEXAS A&M UNIVERSITY

INITIAL STATE 2017

CRACOW, SEPTEMBER 20 2017

RJF, G. Chen, S. Somanathan, arXiv:1705:10779 

S. Rose, RJF, in progress



Angular Momentum in Nuclear Collisions

 Initial angular momentum present at finite impact parameter 𝐿~
𝑏

2
𝐸𝐶𝑀.

 Carried by shear movement.

 Mostly neglected for decades. Justified?

 At LHC and top RHIC energies: 

 collision energy macroscopic, 𝐸~0.1 mJ

 𝐿~106ℏ ~ 10−25 mJs; far from macroscopic!
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Angular Momentum in Nuclear Collisions

 Manifestations in the final state

 Rapidity-odd directed flow 𝑣1

 Polarization of final state particles

 Effects decrease with collision 
energy.
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[STAR, Nature 548 (2017) ]



Angular Momentum in Nuclear Collisions

 Much recent theoretical work on vorticity, production of polarized 
particles, focus on lower energies.

 Here: how is initial angular momentum transported to midrapidity in the 
limit of very high energy? 

 Use the classical McLerran-Venugopalan model as an effective theory 
applicable at high energies and early times
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Liang and Wang; Csernai, Magas and Wang; Becattini, Csernai and Wang; Pang et 

al.; Jiang, Lin and Liao; …



Collisions at High Energy: Time Evolution

 Initial nuclear wave functions

 Strong classical gluon fields

 Local equilibration/hydrodynamization

 QGP/HG fluid close to local equilibrium

 Hadron gas and freeze-out
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Expectations

 Caveat: we use boost symmetry in the calculation, good approximation at 
high energies.

 Infinite system: no global conservation laws.

 Boost symmetry apparently does not allow for rotation, only shear flow 
(as in the initial state).

 We are used to think of flow as a vector. The situation is more interesting 
when rank-2 tensors are involved.
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Solving Yang-Mills Equations

 Color charges in nuclei → Nuclear fields 𝐴1
𝑖 , 𝐴2

𝑖

 Initial interaction of fields (LC gauge): 

 Here: use recursive solution for the gauge field after the collision

 Use high orders for realistic time                                                                      
evolution.
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McLerran and Venugoplan (1994) 

RJF, Kapusta, Li (2006)

Chen, RJF, Kapusta, Li (2015)

Kovner, McLerran, Weigert (1995)



Energy Density and Energy Flow

 First: analytic estimates for event averages, lowest orders in time.

 Energy momentum tensor in Milne coordinates

 Event averages:

 Initial energy density

 Initial rapidity-even and -odd transverse flow 
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RJF, Kapusta, Li (2006); Chen, RJF (2013); Chen, RJF, Kapusta, Li (2015)
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 First: analytic estimates for event averages, lowest orders in time. 

 Energy momentum tensor in Milne coordinates:

Energy Density and Energy Flow 9

 Some components of the gluon Poynting
vector carry angular momentum:

 They all emerge from the rapidity-odd              
flow term 𝛽𝑖.



Angular Momentum 

 Plot angular momentum carrying part of the 
Poynting vector (other terms omitted):

 Vortex aligned with global angular momentum

 Energy shear flow counter to global ang. Mom.

 Angular momentum:

 In a boost invariant system only 𝑑𝐿/𝑑𝜂 makes 
sense.

 Lowest order in time:

 Assuming a symmetric A+A collision.
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RJF, G. Chen, S. Somanathan, arXiv:1705:10779 

Inbound longitudinal 
flow of L2!

Pb+Pb, b=6 fm



Angular Momentum 

 Back of the envelope estimate (𝜏 = 1/𝑄𝑠) 
𝑑𝐿2
𝑑𝜂

=
1

2
𝑄𝑠
−3𝑅𝐴 ഥ𝜀0

[𝑅𝐴= nuclear radius, ഥ𝜀0=average energy density within radius 𝑅𝐴

 Scaling with impact parameter

 Qualitatively similar to other models
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Switching to Fluid Dynamics

 Rapid matching  between classical YM and viscous fluid dynamics

𝑇𝑓
𝜇𝜈

= 𝜀 + 𝑝 + Π 𝑢𝜇𝑢𝜈 − 𝑝 + Π 𝑔𝜇𝜈 + 𝜋𝜇𝜈

at a time 𝜏 = 𝜏0, similar to IP-Glasma+MUSIC

 Enforce conservation laws, 𝜕𝜇𝑇𝑡𝑜𝑡𝑎𝑙
𝜇𝜈

= 0

 Keep viscous stress (or violate angular momentum conservation).

 Velocity field and dissipative flow contributing to angular momentum:

 There are other flow 
contributions (radial flow, 
Bjorken flow, etc.) that do 
not contribute to angular
momentum (not shown).

 Longitudinal flow smaller than 
average radial flow.
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Evolution in Fluid Dynamics

 Further time evolution in fluid dynamics:

 Shear stress tensor decays

 Shear flow dissipates

 The naively expected picture holds at very late 
times in the collision.

 Boost invariance suppresses rotation and 
Kelvin-Helmholtz instabilities. 

 Matching guarantees continuity of the energy 
momentum tensor but not of the equations of 
motion.

 Non-trivial dynamics in early times gluon fields 
from Gauss’ Law, switching instantaneously to a 
dissipation law.
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VIRAL fluid dynamics
Τ𝜂 𝑠 = Τ1 4𝜋, 𝜏0 = 0.1 fm/c



Full Simulations

 Semi-analytic calculation

 Numerical sampling of the nuclear charge distributions 𝜌1, 𝜌2.

 Compute nuclear fields (LC gauge) 𝐴1
𝑖 , 𝐴2

𝑖 .

 Use recursion relation for the fields after the collision

 Time evolution of the energy density, single event
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PreliminaryPreliminary

Previous numerical solutions:

Krasnitz, Nara, Venugopalan (2003); 

Lappi (2003); … 

Fukushima, Gelis (2012); Schenke, 

Tribedy, Venugopalan (2012)



 Dominated by fluctuations, dig out contributions to angular momentum

 Example: initial energy density, 200 events, same average charge 
distribution (sampled from Au+Au @ 6 fm)

 Directed flow can be identified, magnitude and sign consistent with the 
event-averaged calculation.

Angular Momentum with Fluctuations 15

Average Τ𝑇13 𝑇00~ − 2% 𝑐 at 𝜏~0.3 fm
→ rapidity-odd directed flow of the local peak.

Preliminary Relation between 
integrated (per rapidity) 
longitudinal and rapidity-
odd directed flow holds.



Conclusion and Outlook

 Boost invariant setup allows for angular momentum carried by gluon 
fields.

 Classical Yang-Mills phase: angular momentum built up through rapidity-
odd (directed) flow of energy, driven by Gauss’ Law.

 Matching to viscous fluid dynamics: shear flow at midrapdity aligned with 
total angular momentum, dissipates in boost-invariant viscous hydro. 

 Possible signals only from early times? 

 Sensitivity to switch off time of classical glue dynamics.

 Consistent with small signals at high energies. Going to lower energies: 
breaking of boost-invariance needed as a next step.

 First results from event-by-event simulations: large fluctuations in the 
event plane, event-averages match up.
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Backup
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Origin of Flow in YM

 Initial longitudinal fields E0, B0 → transverse fields through QCD versions of 
Ampere’s, Faraday’s and Gauss’ Law. 

 Here abelian version for simplicity.

 Gauss’ Law at fixed time t

 Difference in long. flux → transverse flux

 rapidity-odd and radial

 Ampere/Faraday as function of t: 

 Decreasing long. flux → transverse field

 rapidity-even and curling field

 Full classical QCD at 𝑂 𝜏1 :
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Chen, RJF (2013)



Transverse Flow

 Transverse Poynting vector: Transverse plane

 Transverse Poynting vector: Event Plane

(long. component suppressed)

 Radial and elliptic flow

 Rapidity-odd directed flow (from Gauss Law)

 Angular momentum
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10

α only β only Linear comb.

Chen, RJF (2013)

Pb+Pb, b=6 fm



Initializing Fluid Dynamics

 Incomplete matching destroys energy and momentum conservation 
(thin lines = shear stress discarded at matching)

 Transverse flow dominates for matching at early times.
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Resummation of the Time Evolution 

 Generic arguments: convergence 
radius of the recursive solution ~1/Qs.

 “Weak field” approximation to Yang 
Mills 

 Can be rederived from the recursive 
solution.

 Resumming 𝑄𝜏 𝑘 terms: semi-closed 
form
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VIRAL 3+1 D Fluid Code 22

 KT for fluxes, 5th order WENO for spatial derivatives, 3rd order TVD 
Runge Kutta for time integration.

 Bulk and shear stress, vorticity

 Gubser and Sod-type tests:


