Azimuthally-dependent femtoscopy in central p+Pb collisions at 5.02 TeV with the ATLAS detector

Petr Balek

for the ATLAS collaboration

19 September 2017

Weizmann Institute of Science

Petr	Ba	lek
1	Du	icirc

motivation

- long-range azimuthal correlations ("ridge") are observed not only in Pb+Pb, but also in p+Pb and pp collisions
- this is reproduced by hydrodynamics, however is it suitable to use hydrodynamics in such small systems?
- we can measure geometry of the source of the outgoing particles using Hanbury Brown & Twiss correlations (HBT)

 \rightarrow pairs of identical particles needed

 \Rightarrow Bose-Einstein correlations may be observed

introduction

• using relative variables:

$$\bullet q = (p^a - p^b) \qquad q_{inv} = \sqrt{|q^\mu q_\mu|}$$

- $k = (p^a + p^b)/2$
- r displacement at freeze-out
- two-particle correlation function:

$$C_k(q) = \frac{A_k(q)}{B_k(q)} = \frac{\mathrm{d}N/\mathrm{d}^3 q}{\mathrm{d}N'/\mathrm{d}^3 q}$$

 $\leftarrow \text{ pairs from the same event} \\ \leftarrow \text{ pairs from different event}$

- to account for all real-world effects, Bowler-Sinyukov form is used: $C_k(q) = \left[(1 - \lambda) + \lambda K(q) C_{BE}(q)\right] \Omega(q)$
- the correlation function depends on the two-particle source density function $S_k(r)$:

$$C_{BE}(q) = 1 + \int S_k(r) \underbrace{\left(|\langle q|r \rangle|^2 - 1 \right)}_{\mathbf{d}^3 r} \mathrm{d}^3 r = 1 + \mathcal{F}[S_k](q)$$

 $\cos q \cdot r$

(for non-interacting identical bosons)

introduction

- vectors can be expressed in longitudinal rest frame of each pair (a.k.a. longitudinal co-moving frame, LCMF; $k_z = 0$ and $p_z^a = -p_z^b$):
 - q_{out} along $k_{\rm T}$ $(k_{\rm T} = (p_{\rm T}^a + p_{\rm T}^b)/2)$
 - ▶ q_{side} other transverse direction
 - ▶ q_{long} longitudinal (was boosted w.r.t. center-of-mass system)
- Bose-Einstein part of the correlation function is a fit to:

$$C_{BE}(q) = 1 + e^{-R_{inv}q_{inv}}$$
 ... 1D fit
 $C_{BE}(q) = 1 + e^{-|Rq|}$... 3D fit

$$R = \left(\begin{array}{ccc} R_{out} & R_{os} & R_{ol} \\ R_{os} & R_{side} & 0 \\ R_{ol} & 0 & R_{long} \end{array} \right)$$

- R_{inv} is *invariant radius* • R_{out} , R_{side} , and R_{long} are HBT radii $\left.\right\}$ length scales of the source
- one of the non-diagonal element has to be zero

azimuthal analysis

• HBT radii are also measured as a function of elliptic flow vector magnitude $|\vec{q}_2|$ and w.r.t event plane Ψ_2

•
$$\Psi_2 = \frac{1}{2} \arctan\left(\frac{q_{2,y}}{q_{2,x}}\right)$$

- Ψ_2 measured in Pb-going side ($\eta < -2.5$)
- correlation functions are corrected for the event plane resolution
- results only for the most central events (0–1%, red)
- event planes are aligned in the event mixing
- allowed cross-term to be non-zero is *R*_{os}

$$R_i = R_{i,0} + 2R_{i,2}\cos[2(\phi_k - \Psi_2)]$$

• ϕ_k – azimuthal angle of $k_{\rm T}$

ATLAS detector

Inner detector & dataset

- 2T magnetic field
- $\bullet~$ reconstructing tracks with $|\eta| < 2.5$ and $p_{\rm T} > 0.1~{\rm GeV}$ $_{\rm 21me}$
- Pixel detector providing deposited charge

- p+Pb data from 2013 with $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$; $L_{\rm int} = 28 \, {\rm nb}^{-1}$
- trigger:
 - MBTS signal (minimum bias)
 - high-multiplicity trigger (for azimuthal analysis)
- centrality based on energy deposited in Pb-going side of Forward Calorimeter ($-4.9 < \eta < -3.1$)

pion identification

arXiv:1704.01621

- using dE/dx derived from the ionization charge deposit in the Pixel detector
- purity estimated from Hijing; requiring both particles are correctly identified as pions
- $y_{\pi\pi}^{\star}$ rapidity of the pair in the center-of-mass frame, assuming masses of pions

hard-process contributions

- significant contributions from hard processes even in Hijing
- when hard scattering suppressed, the background disappears
- $\bullet\,$ mapping $(+-) \to (\pm \pm)$ is derived from the simulation to predict the contribution in data
- hard-process contributions measured in opposite-sign data

fitting procedure

- fit performed in 1D or 3D
- background measured in opposite-sign data (blue)
- used to predict background in same-sign data (violet)
- (same-sign) correlation function fitted (red) while the background is fixed
- HBT radii are extracted from the fit

HBT radii

- decreasing size with $k_{\rm T}$ indicates collective expansion
 - high- $p_{\rm T}$ particles are more likely to be created earlier
- pronounced mostly in central collisions
- vanishing in peripheral collisions

arXiv:1704.01621

0.8

azimuthal $R_{out}(|\vec{q}_2|)$

ATLAS-CONF-2017-008

- $\bullet~0.2 < k_{\rm T} < 0.3$ GeV, represent late stage of the evolution
- sign of modulation indicates smaller in-plane size
- stronger modulation than other HBT radii
- same orientation as in A+A

azimuthal $R_{side}(|\vec{q}_2|)$

- R_{side} perpendicular to R_{out}
- modulation larger in-plane, thus the source is extended out-of-plane at freeze-out
- compatible with elliptical transverse density with its minor axis aligned with event plane

ATLAS-CONF-2017-008

- similar behavior as R_{side}
- source expands longitudinally in-plane

azimuthal $det(R_T)$

ATLAS-CONF-2017-008

•
$$det(R_T) = R_{out}R_{side} - R_{os}^2$$

• transverse area is slightly suppressed in-plane

azimuthal det(R)

ATLAS-CONF-2017-008

- det(R) volume scale
- no modulation within uncertainties

- HBT radii measured in p+Pb collisions
- they show a decrease with increasing $k_{\rm T}$; consistent with collective expansion
- azimuthal distributions in the most central collisions are consistent with short-lived hydrodynamic evolution:
 - no significant modulations for small $|\vec{q}_2|$
 - ► *R*_{out} and *R*_{side} modulations suggest in-plane suppression and out-of-plane enhancement
- similar dependence on $(\phi_k \Psi_2)$ observed in A+A collisions

backup

systematic uncertainties

