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No...



...because the physics of initial stages in hadron-hadron collisions is
nonperturbative for most quantities, and nonperturbative QCD is
complicated. ..
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Conservation of Isotopic Spin and Isotopic Gauge Invariance*

C. N. Yanc T anp R. L. MiLLs
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... but very interesting, because it teaches us about
strongly correlated real-time dynamics of a non-Abelian gauge theory

Caveat: This talk is NOT a summary but my limited personal perspective
on some recent developments



High Multiplicity pp collisions
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Two particle correlations: CMS results
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Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the
LHC CMS Collaboration (Vardan Khachatryan (Yerevan Phys. Inst.) et al.). JHEP 1009 (2010) 091
Cited by 597 records

5th most cited CMS physics paper to date!



My initial interest (in 2010) was piqued by the
sub-structure of the ridge shown:
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Evidence of a semi-hard scale in the data?

If this scale is = Q, since o (Q¢%) << 1
could examine this nonperturbative strongly correlated
phenomenon in weak coupling

will return to this point later...



Long range rapidity correlations are a chronometer

detection
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Long range correlations sensitive to very early time
(fractions of a femtometer ~ 1024 seconds) dynamics in collisions



Another surprise: central p+A looks like peripheral A+A

NoE ™ < 260 (b) CMS pPb |5, = 5.02 TeV, 220< Nj{"™ < 260
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p+A ridge seen --much large than p+p at same multiplicity
and nearly as large as that in peripheral Pb+Pb collisions

First indication that hydrodynamics may play a role in such events
Several early papers by Bozek and Broniowski



e Particles That Flock:
‘ Strange Synchronization

¥ z

== Behavior at the Large
Hadron COllider Scientific American, February (2011)

Scientists at the Large Hadron Collider are trying to solve a
puzzle of their own making: why particles sometimes fly in
sync

Obes

The high-energy collisions of protons in the LHC may be uncovering
“a new deep internal structure of the initial protons, ” says Frank
Wilczek of the Massachusetts Institute of Technology, winner of a
Nobel Prize

“At these higher energies [of the LHC], one is taking a snapshot of the
proton with higher spatial and time resolution than ever before”




Deep internal structure of the proton...
A piece of initial state physics that may matter for the final state

Eccentric protons
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Bjorken, Brodsky, Goldhaber, PLB726 (2013) 344

HERA data on incoherent diffractive vector meson production favor this
Talks by Schenke and Mantysaari



Timeline of our (mis?) understanding...

e 2010—Ridge in high multiplicity p+p (LHC)! Probably CGC!
e Early 2010s—QGP in p+Pb!
e Early 2010s—QGP in d+Au!

@ Mid 2010s and now-ish—QGP in high multiplicity p+p? QGP in
mid-multiplicity p4+p?? QGP in d+Au even at low energies???

From Ron Belmont’s talk



Collectivity in the sense of v,{2} 2 v,{4}=v,{6}=v,{8} is now ubiquitous
...widely believed when first seen to be “proof” of final state response to
initial state geometry
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Our understanding of cumulant measurements now more nuanced...

» Multi-particle long-range correlation, i.e. collectivity, could produce
c,{4}, c,{6}.. with any sign: it is the property of the shape of p(v,)

= Also possible in final state, most models has p(¢) that give € {2k} with “correct”
sign. But the initial geometry in small systems is not settled

2

=>» sign-change is possible if 62{4}=<v;>—2<v2 >2 o <£4>—2<82 >2 >0 From talk by Jia
=» or p(€) may be engineered such that the signs of ¢ {2k} flip

Especially relevant to understanding whether positive c¢,{4} seen in p+A at RHIC
is consistent with flow

0.71 Convergence of higher moments also seen in
> a very simple initial state “color domain” model

W/ Talk by Mace

. See also, talk by Kovner

v,{4} also seen from MPI model of initial state
QCD interference contributions
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Our understanding of initial/final state correlations is also more nuanced...

COLLECTIVITY: POSSIBLE ORIGIN

Final state Initial state
e Driven by initial state geometric e Driven by initial momentum
correlations correlations
W
e Develops gradually during (hydro) e Pre-exist before collisions or
evolution develops very soon after
and
e Requires large multiplicities to e High-multiplicities are not required,
facilitate final state interaction but allowed
e Requires non-trivial initial state e Momentum correlations are present
geometry (proton shape fluctuations) (suppressed by 1/N?) for “round” p

Talk by Skokov



Stated more bluntly...

Saturated wavefunctions in hadron-hadron collisions
will generate both non-flow and flow contributions
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< Event multiplicity Schlichting, Tribedy, arXiv:1611.00329

Their relative contributions depend on Q, p;, multiplicity and system size



Saturated gluons have the maximal occupancy possible in
QCD ~ 1/ag

-- no quasi-particle description possible
at early times for modes with p; < Qg

The spacetime evolution of these modes described

by solving the equations of classical QCD:

the Yang-Mills equations

QCD coupling drops out for these modes
Talks by Boguslavski, Fries, Gelis,
Mueller?, Schenke

Modes with p;>> Qq:
Have quasi-particle description, and match
to pQCD ... matching can be done order by order in pQCD - jet physics

Flow component at 1=1/Q described by p; < Qg
Non flow component by p; >Q,



Subsequent spacetime evolution of “flow component” for Tt >> 1/Q,

Gluon distribution: (v p, . v)
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Plasma instabilities cause the system to become overoccupied in p; and p,
very quickly... and system flows to an attractor, which is that of the bottom-up
kinetic scenario

Momentum space anisotropy: A| /Ay
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Recent developments in
bottom-up thermalization...

Lumpy “hot spot” transverse structure in

IP-Glasma/EKRT survives until
matching with hydro

Mapping the CGC fluctuating initial conditions to hydro

Thydro

causal circle

CGC

T0 ~~ 1/Cgs
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When does the background stress tensor approach second order hydrodynamics?
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Different values of coupling Talks by Teaney
ive different 7/s .
J / and Mazeliauskas

In terms of eta/s, all couplings

thermalize at same scaled time
Keegan, Kurkela, Romatschke,Schee, Zhu

Gives a basis for interpolating
from weak coupling results to
stronger coupling



Mapping the CGC fluctuating initial conditions to hydro

Recent developments in 2c(r — o)
Thydro ~ 11fm

bottom-up thermalization...
y <

Lumpy “hot spot” transverse structure in
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What about “non-flow” mini-jets and jets at the scale p;2Q,?

Fluid dynamics < final state interactions < Jet quenching

« Bottom-up thermalization formalizes relation R.Baier, AH. Mueller, D. Schiff, D.T. Son, 2001
between fluid dynamics and jet quenching

Kurkela&Zhu, PRL115 (2015)182301
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time scale Venugopalan, ... o
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from the same collision kernels \kernel J

Jet quenching and fluid dynamics = two manifestations of the same physics



What about this flow+non-flow framework for the smaller systems?

8o ppi\s=7TeV, <k>=0.8 GeV/c
® p-Pb \s,, =5.02 TeV, <k;>=0.7 GeV/c
A Pb-Pb \s,, =2.76 TeV, <k;>=0.75 GeV/c
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HBT radii indicate that lifetimes of
the smaller systems is quite short
...little time for rescattering
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Non-flow p; 2Q, piece of the initial state generate the Glasma graphs
— QCD interference “Bose Enhancement” contributions...little jet quenching

Talks by Altinouk and Kovner



What about this flow+non-flow framework for the smaller systems?
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Can one understand this conformal strong field
Yang-Mills flow in small systems within the “hydrodynamization” paradigm?

Talks by Romatschke and
Spalinski

rBRSSS Boltzmann AdS/CFT

0"1 order hydro = = ‘
1° order hydro - = = - numerical
2" order hydro attractor
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Simulations of early time dynamics employing holographic ideas

Talks by Attems, Lublinsky, van der Schee



Rapidity correlations and puzzling data on the underlying stringy structure...

wounded quarks
| | — mnoiss | Wounded quark model — Can multiparticle production
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Going ahead... important benchmarks in the CGC ﬂow/hydro debate
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to understand in both frameworks

Theory Talks by Noronha-Hostler,Niemi,Soto-Antoso,Tribedy,...
Experimental talks by McGlinchey,Hill,Nagle,Magdy,Nie,Lacey

Apologies to anyone whose talks | could not cover..
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Jbut this is not a summary!



“A theory is something nobody believes, except the person who made it. An
experiment is something everybody believes, except the person who made it.”

Significant advances in both theory and experiment. Keeping this
wise remonstrance in mind, we may uncover more remarkable things!



Significant advances in both theory and experiment. Keeping this
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wise remonstrance in mind, we may uncover more remarkable things!
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| am sure | speak for all participants in offering warm thanks to
the organizers for a very interesting conference and for their
outstanding hospitality in this beautiful city!

Dziekuje Ci bardzo!!
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Several locations being considered: Stony Brook and Brooklyn on Long Island
& Manhattan (Columbia/CUNY) in NYC and New Brunswick (Rutgers) in NJ

LA
NYCQ BNL
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Brooklyn JFK
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Rutgers

Interesting possibilities at each location...we expect a final site selection
& fixing of the date soon...



Local organizing committee:

Peter Steinberg & Raju Venugopalan (BNL, co-Chairs)
Bjoern Schenke

BNL, theory & experiment

Dave Morrison
Lijuan Ruan
Thomas Ullrich

Agnes Mocsy Pratt
Adrian Dumitru Baruch 10 EXPERIMENT

Stefan Bathe 6 THEORY

Brian Cole Columbia

Derek Teaney
Tom Hemmick Stony Brook

Jiangyong Jia All the major experiments

Sevil Salur Rutgers are represented on the LOC
Jaki Noronha Hostler

Helen Caines Yale
2 Temple faculty as JLab representatives




Springtime in New York:

We look forward to welcoming you all to
the next edition of Initial Stages!



