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• Superconducting power devices are expected 

to increase the power density for 
applications such as all-electric ships and 
airplanes.

• Propulsion motors, generators, and power 
cables operate at cryogenic temperature.

• Power electronic devices at room 
temperature lead to substantial heat flux into 
the cryogenic system.

• There is renewed interest to investigate power 
electronic devices that operate at cryogenic 

temperature.

• The cryogenic environment is challenging since it 
impacts material properties.
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THE CRUX WITH HEAT 
INFLUX
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• Advantages

• Minimize heat influx from 
ambient/cryogenic interfaces

• Increased power density and 
efficiency

• Continous loop of cryogen

• Disadvantages:

• Resistive devices in cryogenic 
environment come with cooling 
penalty

• Only limited experience with 
cryogenic power electronics
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SEMICONDUCTORS: 
PACKAGING
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Not suitable for cryogenic applicactions:
• Contains plastics and silicone gels
• CTE mismatch

More suitable in cryogenic 
environment:
• Ceramics press-pack modules
• Braze joints

Gel



PRESS-PACK IGBT
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Currently up to 6500 V, 3000 A, and 
reverse blocking or conducting variants.



• Bipolar semiconductors like BJTs and thyristors/GTOs are not suitable

• Carrier freeze out

• Current gain β drops

• Medium power IGBTs (up to 1700 V, 200 A) successfully tested over 50K-300K
and over 4.2K-295K

• Bare semiconductor without package

• Semiconductor physics (IGBT):

• 𝑉𝐶𝐸 ↓ @ same 𝐼𝐶𝐸… (increase in carrier mobility)

• Threshold voltage 𝑉𝑇 ↑ (carrier freeze out)

• 𝑉𝐵𝑅 ↓ (typ 20-30%)

• Reduced tail current (reduced carrier lifetime)

SEMICONDUCTORS: 
PERFORMANCE
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INDUCTORS AND 
TRANSFORMERS
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• Increased core losses due to higher conductivity of steel (larger eddy currents)
• Compensate by thinner sheets of steel?

• Core-less (“air core”) design?

• Core at RT, winding at cryogenic temperature

• Reduced conductor losses
• Thinner wire  higher winding density

• Potentially superconducting (current ripple, AC losses?)

Laminated core (increased core 
losses)

Powder core (compatibility with cryogenic temperatures 
unclear)



CAPACITORS AND 
VARISTORS
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• Capacitors are problematic due to mismatch of CTE between polymeric
film and metal film (large interface surface)

• Size matters

• Low capacitance or low voltage?

• Type of dielectric (ceramic?)

• Metal oxide varistors (MOVs)
• Similar issues with interface as capacitors

• Drop in specific heat capacity at cryogenic temperature

• Better avoid

• Capacitor-limited and MOV- free converter design
• No DC link capacitors

• Filter capacitors – at room temperature?

Electrolytic capacitors

Tantalum capacitors

Ceramic capacitors



SYSTEM ASPECTS: 
TOPOLOGY
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Objective: minimize the number and size of capacitors 
in the converter design

• Promising topologies
• Current source converters (inductor in DC link) – requires 

reverse-blocking semiconductors

• Matrix converters (direct AC-AC, no DC link)

• Reduce filters requirements
• Multilevel topologies

• Cascaded converters - Interleaving

• Minimum capicitance in the filter design

• Might require reverse blocking IGBTs

Current source converter

Matrix converter



• Controller including auxiliary power supply and communication at RT

• Gate driver at RT

• Physical separation between gate driver and IGBT can be problematic

• Instrumentation

• Current sensing

• Voltage sensing

• Temperature sensing

CONTROL
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EXPERIMENTAL SETUP
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EXPERIMENTAL SETUP
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EXPERIMENTAL SETUP
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EXPERIMENTAL SETUP
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STATIC CHARACTERIZATION
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• Test was short, i.e. Tj ~77 K
• 4-wire method to avoid measuring 

voltage drop in the leads
• Reduction of conduction losses of 

5-20% if IC is larger than 50 A



DOUBLE PULSE TEST
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• Dynamic characterization of IGBTs in a bath of LN2 and at RT

• 50 cm gate leads

• Inductor in a bath of LN2 (resistance changes)



DOUBLE PULSE TEST
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• At 77 K:

• Reduced IC overshoot (anti-parallel diode stores less charge)

• Higher IC (due to lower resistance of the inductor and wiring)

• Higher turn-off voltage overshoot (due to faster current decay)

• Shorter tail current



• What can we do with a single phase stack? – A 225 kW boost converter!

• Input: 1,500 V / 150 A

• Output: 2,000 V / 113 A

• Switching frequency: 2 kHz

• Results from PLECS computer model

• Switching losses: 373 W  148 W

• Conduction losses: 96.1 W  73.4 W

• Stay tuned...

MODELING A BOOST 
CONVERTER
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6.3 mH 140 µF

IGBT stack



• Cryogenic power electronics have the potential to increase efficiency and 
power density of a fully cryogenic power system.

• At the System level: reduced heat flux and system optimization 
(continuous cryogenic loop)

• At the converter level: enhanced semiconductors properties and reduced 
conductor losses (inductors)

• Many of the earlier studies focused on characteristics of semiconductors

• Semiconductors are only one part of a converter

• Packaging needs to be considered

• Topology of the converter is important (e.g., to avoid large capacitors)

• A system level approach is needed (cryogenics + converter + control)

• Multi-disciplinary team

CONCLUSION
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