

and N00014-16-1-2282

Design Optimization of a Superconducting Gas-Insulated Transmission Line

Peter Cheetham^{1,2)}, Jonathan Wagner^{1,2)}, Chul H. Kim¹⁾, Lukas Graber³⁾, and Sastry V. Pamidi^{1,2)}

1)Center for Advanced Power Systems, Florida State University, 2)Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, 3) School of Electrical and Computer Engineering, Georgia Institute of Technology

Introduction and Objectives

- Gaseous helium (GHe) is the preferred cryogen by the US Navy for superconducting devices
- GHe allows lower operating temperature than allowed by liquid nitrogen (LN2) with reduced risk of asphyxiation
- Critical current (Ic) of high temperature superconducting (HTS) cables increases significantly at lower temperatures – Ic at 67 K is twice as much as it is at 77 K
- The dielectric strength of GHe is currently limiting GHe cooled superconducting devices to low-medium voltage applications
- We have shown that addition of small mol% of H₂ and/or N₂ to GHe improves dielectric strength significantly without safety concerns
- The S-GIL design was developed to utilize the improved dielectric strength of GHe mixtures with improved dielectric strength
- Investigations have been undertaken to develop a GHe cooled superconducting cable suitable for 12 kV DC for US Navy all-electric ship applications

- GHe cooled HTS Technology provides high power density, lightweight and compact solutions
- HTS technology is useful in naval, aerospace and many other applications where high power density and efficiency are demanded

Conclusion

- The dielectric strength of GHe has been significantly improved with the introduction of small mol% of H₂ and/or N₂
- The S-GIL is a potential design of a GHe cooled superconducting cables rated for 12 kV DC for US navy all-electric ship application
- Further development of the rigid and flexible cryostat design is necessary

Superconducting Gas-Insulated Transmission Line

- The idea is similar to SF₆ insulated GIL
- · Utilizes the cryogen as both the coolant and dielectric medium
- Dielectric characteristics dependent on the electric field within the cryostat and the cryogen used

Co-axial Electric Field Equation

$$Z_{max} = \frac{V}{R_s \times \ln\left(\frac{R_c}{R_s}\right)}$$

Optimization occurs when

$$\ln\left(\frac{R_c}{R_s}\right) = 1$$

Where E_{max} – Maximum Electric Field, V- applied voltage, r_s- radius of superconducting cable and r_c -inner radius of the cryostat

Conventional HTS Cable Design (A)

Superconducting Gas-Insulated Transmission Line (B)

At room temperature, Vacuum and gas H.V. Source AC (60Hz) injection lines approximately 30 - 45% increase in breakdown strength with 4 mol%

High pressure

Proof of Concept Experiment

Proof of concept experiments performed demonstrated how

voltage ratings dependent on dielectric strength of cryogen

Dimension of the cryostat and superconducting cable selected

 A relationship exists between breakdown voltage at room temperature and 77 K

Proposed S-GIL Design

- Both rigid and flexible cryostat designs have been envisioned for the S-GIL.
- Rigid cryostats have been utilized for Gas Insulated Transmission Lines (GIL)
- Flexible cryostats have been the preferred choice for superconducting power cables
- Rigid cryostats typically have lower heat leak than flexible cryostats
- Flexible cryostats lend themselves to a continuous manufacturing/installation process
- Rigid cryostats allow for sharper bend radii and simplified spacer design
- Knowledge on cable route required to determine suitability of each design

Flexible Cryostat Design

Rigid Cryostat Design

AC (rms) breakdown at 77 K

Gas Insulated

to reflect what would be used

Benefits of S-GIL Design

- · Partial Discharge is not a limiting factor unlike the traditional lapped tape design
- Superior heat transfer characteristics
- Continuous flow of gas reduces space charge accumulation important for DC cables
- Utilizes the improved dielectric properties of GHe-H₂ mixtures

S-GIL Model Cable Design

