

Introduction

Nb ₃ Sn perf Future Circu • Maximize • Maximize	ormance ular Collide J _c at 16 T pinning fo	improvemen er (FCC) orce F _p at hig	t is needed	d for proj					
 Refinement of grain size increases F_{p,max} Add ZrO₂ particles to prevent grain coarsening treatment [1] Next step is to produce a Ti-doped ternary wire to increa 									
Ta	ble 1. Current	state of Nb ₃ Sn str	ands from variou	s production ro					
	Internal Sn, RRP	Tube	ITER	PIT					
12 T Jc, A/mm2	2500-3000	2000-2500	1000-1200	2000-2500					
Stability	Low	medium	high	medium					
Loss	High	medium	low	medium					
50-100 nm		15-30 nm	NbO ₂	SnO					

Table 2. "Naïve" look at the theoretical limits of J ₂ in Nb ₂ Sn							250
		I. Present state-of-the- art RRP strands	II. The wire with SnO ₂ - 625 C / 800h	III. Only improve <i>B_{irr}</i> to 25 T by Ti doping, etc.	IV. Only refine the grain size to 25 nm	V. Both improve the B_{irr} to 25 T and refine the grain size down to 25 nm	° ²⁰⁰ - MD '8 '8 ¹⁵⁰ -
	Grain size, nm	100 - 120	36	36	25	25	7 100
	F_p -B peak	0.2 <i>B</i> _{irr}	$0.34B_{irr}$	0.34 <i>B</i> _{irr}	$0.5B_{irr}$	$0.5B_{irr}$	a laye
	$F_{p,max}$, GN/m ³	~90	180	180	~250	~250	
	B _{irr} , T	25	20	25	20	25	
	Layer J_c , A/mm ²	5,000	9,600	16,400	20,000	20,800	
12	Non-Cu J_c , A/mm ²	3,000	5,760	9,840	12,000	12,480	0
Т	Engineering J_c , A/mm ²	1,600	3,050	5,200	6,360	6,600	
	I_c, \mathbf{A}	800	1,530	2,620	3,200	3,320	Note: Assu
	Layer J_c , A/mm ²	2,700	3,800	7,800	12,500	16,000	area fractio
15	Non-Cu J_c , A/mm ²	1,600	2,280	4,680	7,500	9,600	60% Nb ₃ Sr
Т	Engineering J_c , A/mm ²	850	1,210	2,480	4,000	5,100	
	I_c, \mathbf{A}	430	610	1,250	2,000	2,560	

2017 CEC / ICMC Conference July 9 – 13, Madison, Wisconsin, USA

CEC/ICMC 2017 M1PoD-05

Development of a (Nb,Ti)₃Sn multifilamentary wire with ZrO₂ APCs for high J_c , high B_{c2} , and low AC loss J. Rochester¹, X. Peng², M. Tomsic², X. Xu³, E.W. Collings¹, and M.D. Sumption¹

¹ CSMM, Department of Materials Science & Engineering, The Ohio State University, Columbus, USA ² Hyper Tech Research, Inc. Columbus, OH 43228, USA ³ Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Ave Ti %	Bc2 (T)	bmax	bmax/bc2
1.9	22.6	5.6	0.247345
1.6	20.3	5.5	0.247345
1.1	21.3	5	0.234858
0.25	21.7	5.25	0.242308
	Ave Ti % 1.9 1.6 1.1 0.25	Ave Ti %Bc2 (T)1.922.61.620.31.121.30.2521.7	Ave Ti %Bc2 (T)bmax1.922.65.61.620.35.51.121.350.2521.75.25

Initial Multifilament Development

- **Trying out several designs:** T3763: ternary hybrid wire
- Remainder contain Sn-2%Ti rods

Conclusions

- T Jc in monofilaments
- oxidized Nb3Sn layers
- may need to add more Ti
- enhanced Jc values.
- the ternary alloy Bc2

References

[1] Xu, X., Sumption, M. and Peng, X. (2015). Internally Oxidized Nb3Sn Strands with Fine Grain Size and High Critical Current Density. Advanced Materials, 27(8), pp.1346-1350. [2] Xu, X., Sumption, M., Peng, X. and Collings, E. (2014). Refinement of Nb3Sn grain size by the generation of ZrO2 precipitates in Nb3Sn wires. Applied Physics Letters, 104(8), p.082602.

Acknowledgments

SBIR phase I DE-SC0013849 and University Grant DE-SC0011721.

Inner ring of filaments contain Sn/SnO₂ powder

T3761: Densely packed Sn/SnO₂ powder in Cu tube in Nb-1%Zr tube T3775: Another externally oxidized subelement containing 6%Ti Additional wire architectures are currently in production

We have demonstrated grain refinement by a factor of 3 and a doubling of 12

Internal oxidation can be used in many Nb3Sn strand types, including Tube (demonstrated) PIT (proposed), RRP/RIT (proposed) etc. Ternary strands under development: Possible to inject Ti into internally

Sn contents remain high with Ti additions, but Bc2 increase not yet seen -

Multifilamentary strands have been demonstrated with refined grains and

New designs which have push non-Cu fraction to above 50% and reaction fraction to above 30% are demonstrated (measurements underway) These need (1) To be optimized, and (2) To be demonstrated for a ternary alloy with

This route is very promising for future Nb3Sn development

