Development of a (Nb,Ti)$_3$Sn multifilamentary wire with ZrO$_2$ APCs for high J_{c}, high B_{c2}, and low AC loss

J. Rochester1, X. Peng2, M. Tomsic2, X. Xu3, E.W. Collings1, and M.D. Sumption1

1 CSMM, Department of Materials Science & Engineering, The Ohio State University, Columbus, USA
2 Hyper Tech Research, Inc. Columbus, OH 43228, USA
3 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Introduction

Nb_2Sn performance improvement is needed for projects like the Future Circular Collider (FCC)

- Maximize J_{c} at 16 T
- Maximize pinning force F_p at high B
- Refinement of grain size increases F_p at high B

Next step is to produce a Ti-doped ternary wire to increase B_{c2}

<table>
<thead>
<tr>
<th>Table 1. Current state of Nb_2Sn strands from various production routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Sn,</td>
</tr>
<tr>
<td>12 T; 4 A/mm2</td>
</tr>
<tr>
<td>Stability</td>
</tr>
<tr>
<td>Loss</td>
</tr>
</tbody>
</table>

Externally-Oxidized Subelement

We started with a proof-of-concept ternary strand consisting of a Cu-Sn-Ti rod inside a Nb-$1\%\text{Zr}$ tube. The wires were heat treated in a vacuum-sealed quartz tube containing varying amounts of CuO pellets.

Observations:

- Grain refinement to ~50 nm
- Ti incorporation in Nb_2Sn layer
- Improvement of J_{c} (calculated from PPMS M-H curve)

Initial Multifilament Development

Ternary hybrid wire

- Inner ring of filaments contain Sn/SnO$_2$ powder
- Remainder contain Sn-2%Ti rods

Sn-$1\%\text{Zr}$ tube

Cu-tubed Nb-$1\%\text{Zr}$ tube

Additional wire architectures are currently in production

Conclusions

- We have demonstrated grain refinement by a factor of 3 and a doubling of 12 T J_{c} in monofilaments
- Internal oxidation can be used in many Nb_3Sn strand types, including Tube (demonstrated) PIT (proposed), RRP/RT (proposed) etc.
- Ternary strands under development: Possible to inject Ti into internally oxidized Nb_3Sn layers
- Sn contents remain high with Ti additions, but B_{c2} increase not yet seen — may need to add more Ti
- Multifilamentary strands have been demonstrated with refined grains and enhanced J_{c} values.
- New designs which have push non-Cu fraction to above 50% and reaction fraction to above 30% are demonstrated (measurements underway) These need (1) To be optimized, and (2) To be demonstrated for a ternary alloy with the ternary alloy B_{c2}
- This route is very promising for future Nb_3Sn development

References

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Division of High Energy Physics, under SBIR phase I DE-SC0013949 and University Grant DE-SC0017125.

2017 CEC / ICMC Conference
July 9 – 13, Madison, Wisconsin, USA