

R&D on RRP Nb₃Sn wires and cables at Fermilab

Emanuela Barzi, Fermilab

Cable R&D for high-field dipoles RRP Wire Optimization with Bruker OST Conclusions

<u>US-MDP Cos-theta 15 T Dipole</u>

Coil:

- o 60-mm aperture
- o 4-layer graded coil
- W_{sc} = 68 kg/m/aperture

Mechanical structure:

- o 2-mm StSt coil-yoke spacer
- Vertically split iron laminations
- o Aluminum I-clamps
- o 12-mm thick StSt skin
- o thick end plates and StSt rods
- o Cold mass OD<610 mm
- Fabrication status: in progress
- Planned magnet test: Spring 2018

32

~	2221	5554						
Strand ID Stack design Ternary element	RRP1 108/127 Ti	RRP2 = 150/169 Ti	Coil	Cable N x d, mm	RRP® Strand Type	Cable length, m	Cable t _{mid} x w, mm ²	Lay angle, deg.
Production year Diameter d , mm I_c (4.2K, 12 T), A	2012 0.7 451-490	2014 1.0 1,052-1,111	15 T Dipole Outer Layer	40 x 0.7	RRP1	374	1.251 x 14.71	16.8
J_c (4.2K, 12 T), A/mm ² I_c (4.2K, 15 T), A J_c (4.2K, 15 T), A/mm ²	2,560-2,722 229-245 1,289-1,365	2,597-2,710 566-619 1,395-1,502	15 T Dipole Inner Layer	28 x 1	RRP2	420	1.803 x 14.79	15.5
D _s , μm Twist pitch, mm	41 14-16	58 23-24						
Cu fraction λ, % RRR Final HT step	53.2-54.4 101-226 640°C/50h	47.5-48.4 343-374 665°C/50h						

15 T Dipole: Short Sample Limit

Magnet short sample limit estimated based on extracted strand data

- o Sample HT: 665°C/50 hrs (OST)
- o $I_{ssl}=11.05 \text{ kA}$ ($B_{ap}=15.25 \text{ T}$) at 4.5 K
- 0 I_{ssl} =12.2 kA (B_{ap} =16.65 T) at 1.9 K

Heat Treatment Optimization for 15 T inner coil

E. Barzi, R&D on RRP Nb3Sn wires and cables at Fermilab - Madison CEC/ICMC 2017

E. Barzi, R&D on RRP Nb3Sn wires and cables at Fermilab - Madison CEC/ICMC 2017

8

sub-element were produced: o Nb7.5wt%Ta diffusion barrier, standard monofilament LAR ~0.20

The following 3 billets with standard

 2 kA/mm^2 for a 169 stack strand at 1.0 mm

 $(D_s \sim 58 \ \mu m)$ by modifications to sub-element.

- o Monofilament LAR increased from the standard ~0.20 to ~0.23
- o Graded monofilament LAR innermost row LAR ~ 0.25, all middle rows LAR ~ 0.20, outermost row LAR ~0.14
- * All billets, as well as 0.8 to 1.2 mm wire samples, were delivered end of July 2016.

RRP Strand Optimization with Bruker OST

0.8-1.2 mm RRP150/169 wire results

Strand ID	RD1	RD2	RD3
Stack design	150/169	150/169	150/169
Ternary element	Ti	Ti	Ti
Production year	2016	2016	2016
Diameter d, mm	0.8 to 1.2	0.8 to 1.2	0.8 to 1.2
<i>I</i> _c (4.2K, 15 T) for 1 mm, A	651 max.	657 max.	665 max.
J_c (4.2K, 15 T) for 1 mm, A/mm ²	1,713 max.	1,684 max.	1,715 max.
D_s , μ m	46 to 69	46 to 69	46 to 69
Cu fraction λ , %	50.9-51.6	49.9-50.5	50.5-50.8
$B_{c2}(4K)$ at J_c^{max} , T	26.7	27.0	26.5
RRR at J_c^{max}	161	30	97
Final HT step	680°C/50h	680°C/50h	665°C/100h

- No major J_c difference was seen with respect to the standard high- J_c sub-element design
 - RRR problem caused by bad barrier in one billet.
- Deformed wires from these billets did not behave better than reference deformed wires.
- This level of J_c was achieved at 53 at.%Nb that is the limit with the available real estate in the wire.
- To go beyond the present state-of-the-art performance the inherent flux pinning increase is needed.

State of the Art

As well-known, the J_c of internal tin strands is proportional to the Nb content that can be packed in the wire. To achieve a $J_c(4.2K, 12T \sim 3,000 \text{ A/mm}^2 \text{ a } 53\% \text{ Nb } \text{ at.}\%$ is required, which is the limit with the available real estate in the wire. It is therefore unlikely to go beyond the present state-of-the-art performance without acting on the inherent flux pinning mechanisms of Nb₃Sn.

E. Barzi, A.V. Zlobin, "Research and Development of Nb3Sn Wires and Cables for High-Field Accelerator Magnets," IEEE Trans. on Nuclear Science, vol. 63 (2), April 2016, pp. 783-803.

E. Barzi, R&D on RRP Nb3Sn wires and cables at Fermilab - Madison CEC/ICMC 2017

- For the 15 T Dipole demonstrator, cables were designed and optimized based on the properties of RRP Nb₃Sn wires
- Sensitivity studies to heat treatment were performed to push performance to nominal required
- Next: 10-stack studies for mechanical properties
- Breakthroughs in J_c for Nb₃Sn wire is not possible without acting on its inherent flux pinning mechanisms
- See also "Innovative Nb₃Sn Thin Film Approaches and their Potential for Research and Applications", this conference