Development of 2G HTS wire production at SuperOx
2G HTS wire production: facility expansion

2G HTS wire performance
- Consistent performance without AP
- R&D into AP

HTS device projects
- Roebel cables
- Lightweight cable for aircraft
- Horizon 2020: HTS motor for aircraft
- FCL
2G HTS wire architecture

- **Hastelloy C276**
- **Al$_2$O$_3$**
- **Y$_2$O$_3$**
- **IBAD - MgO**
- **LaMnO$_3$**
- **CeO$_2$(Gd$_2$O$_3$)**
- **GdBCO**
- **Ag**
- **Finish**

Technology Details

- Sputtering (custom thickness)
- PLD (1-3 microns)
- PLD (100-200 nm)
- Sputtering (30-50 nm)
- e-beam IBAD (5-7 nm) + epi (50-150 nm)
- Sputtering (5-10 nm)
- Sputtering (30-50 nm)
- Cold rolled & electro polished (60 or 100 microns)
- Customised finish tailored to application

11 July 2017
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moscow</td>
<td>Substrate</td>
<td>Buffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HTS</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>Cu</td>
</tr>
<tr>
<td></td>
<td>Finish</td>
<td>Finish</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Buffer</td>
<td>HTS</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>Cu</td>
</tr>
</tbody>
</table>

Decisions to increase throughput are driven by demand
SuperOx Japan LLC: in operation since Nov 2011

Multiprocess one-chamber sputtering/IBAD system
Dual-chamber PLD-HTS system for CeO$_2$ and GdBCO

11 July 2017
e-Polished Hastelloy substrate in Ready buffered tape with LaMnO$_3$ on top out
Moscow buffer layer line commissioned Jan 2016

Good IBAD-MgO RHEED patterns

$\Delta \phi$ (110) LMO < 7°

High I_c by PLD-HTS on Moscow buffer

11 July 2017
Moscow PLD-HTS line commissioned Dec 2016

SuperOx production capacity doubled
Quality control

<table>
<thead>
<tr>
<th></th>
<th>Substrate</th>
<th>Buffer</th>
<th>HTS</th>
<th>Ag</th>
<th>Cu</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-line</td>
<td>Optical</td>
<td>RHEED</td>
<td>Optical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-line, full length</td>
<td></td>
<td></td>
<td></td>
<td>Non-contact I_c</td>
<td>Non-contact I_c</td>
<td>Non-contact I_c</td>
</tr>
<tr>
<td>Off-line, segments</td>
<td>AFM</td>
<td>XRD</td>
<td>XRD SEM</td>
<td>Transport I_c</td>
<td>Transport I_c</td>
<td>Specific tests</td>
</tr>
</tbody>
</table>
2G HTS wire: high I_c over long length

12 mm

77 K

4 mm

I_c (A)

Position (m)

11 July 2017
2G HTS wire: consistent performance

- Low angular anisotropy
- Reproducible lift factors
- NO artificial pinning centres, only intrinsic Gd$_2$O$_3$ nanoparticles due to excess Gd

11 July 2017
Production rate PLD. Classic nanocolumns of perovskite AP centres.
Less anisotropy and higher min. I_c in field with pinning
2G HTS wire: artificial pinning in high rate PLD
first R&D results

Critical current density (MA/cm²) vs. Applied Field (T)

- **AP**
- **No AP**

- **4.2 K**
- **B//c**

- **α = 0.59**
- **α = 0.63**

Higher J_c/I_c in liquid helium

Next steps:
- Optimise for specific T, B
- Verify reproducibility in production wires

Talk M3OrC

11 July 2017
2G HTS wire: customisation

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Silver</th>
<th>Copper plating</th>
<th>Lamination</th>
<th>Surround polyimide</th>
<th>Polyimide wrapping</th>
<th>Solder plating</th>
<th>Tape stacks</th>
<th>Filaments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMSC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fujikura</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SuNAM</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SuperOx</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SuperPower</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Polyimide deposition

Custom copper plating

Custom solder plating

11 July 2017
2G HTS wire: specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Thickness</td>
<td>60 or 100 µm</td>
</tr>
<tr>
<td>Tape width</td>
<td>4 mm</td>
</tr>
<tr>
<td></td>
<td>6 mm</td>
</tr>
<tr>
<td></td>
<td>12 mm</td>
</tr>
<tr>
<td>Critical Current @ 77K, s.f.</td>
<td>80-150 A</td>
</tr>
<tr>
<td></td>
<td>120-200 A</td>
</tr>
<tr>
<td></td>
<td>250-500 A</td>
</tr>
<tr>
<td>J_e at 4.2 K, 20 T</td>
<td>> 400 A/mm2</td>
</tr>
<tr>
<td></td>
<td>> 400 A/mm2</td>
</tr>
<tr>
<td></td>
<td>> 400 A/mm2</td>
</tr>
<tr>
<td>Current Uniformity</td>
<td>±10%</td>
</tr>
<tr>
<td></td>
<td>±10%</td>
</tr>
<tr>
<td></td>
<td>±10%</td>
</tr>
</tbody>
</table>

Customisation:

- + Variable silver thickness
- + Variable copper thickness
- + Lamination
- + Insulation
- + Solder plating
- + Low resistance splices
- + Filaments
- + … just ask

11 July 2017
2G HTS wire production: facility expansion

2G HTS wire performance
 o Consistent performance without AP
 o R&D into AP

HTS device projects
 o Roebel cables
 o Lightweight cable for aircraft
 o Horizon 2020: HTS motor for aircraft
 o FCL
Punch-and-Coat: perfect degradation/delamination stability

Coat-and-Punch: delamination on cycling occurs

S. Otten et al., SUST 28 (2015) 065014

11 July 2017
Poster M1PoB
2G HTS Roebel cables

TapeStar data on individual strand

4.2 K

J. Fleiter et al. CERN Internal Note 2017_15, EDMS: 1757653

35 m cable now in Feather 2 coil at CERN

11 July 2017

Poster M1PoB
In this area, losses in HTS cable are lower than in Al or Cu.
HTS motor for aircraft. Horizon 2020 consortium

Advanced Superconducting Motor Experimental Demonstrator

Source: Airbus Group Innovations
3.3 kV DC FCL for railway grid

- Medium-voltage DC
- Retrofitted into a standard switchbox
- Joint project with «NIIEFA-ENERGO», LLC (St.Petersburg)

<table>
<thead>
<tr>
<th>Specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>3.3 kV</td>
</tr>
<tr>
<td>Rated current</td>
<td>Up to 5 kA</td>
</tr>
<tr>
<td>Limitation speed</td>
<td>100 ms</td>
</tr>
<tr>
<td>Resistance w/o fault</td>
<td>0.001 Ohm</td>
</tr>
<tr>
<td>Resistance during fault</td>
<td>1 Ohm</td>
</tr>
<tr>
<td>Power consumption</td>
<td>< 6 kW</td>
</tr>
<tr>
<td>Cryo-system</td>
<td>Closed type, cryocooler</td>
</tr>
<tr>
<td>Dimensions (mm)</td>
<td>800 x 1740 x 2100</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>700</td>
</tr>
</tbody>
</table>
220 kV FCL for Moscow City grid

- SuperOx runs a contract for Moscow City-owned grid company UNECO, for the first high-voltage FCL in Russia
- Huge long-term benefits for the Moscow city grid from FCL use

11 July 2017
Outline

2G HTS wire production: facility expansion

2G HTS wire performance
 o Consistent performance without AP
 o R&D into AP

HTS device projects
 o Roebel cables
 o Lightweight cable for aircraft
 o Horizon 2020: HTS motor for aircraft
 o FCL
THANK YOU FOR YOUR ATTENTION

www.superox.ru