Design and Manufacturing of Two New CORC Cable-In-Conduit Conductors

T. Mulder^{1,2}, D. van der Laan³, J. Weiss³, A. Dudarev¹ and H.H.J. ten Kate¹

¹ CERN, Geneva, Switzerland

² University of Twente, Enschede, the Netherlands

³ Advanced Conductor Technologies, Boulder, Co, USA

- Introduction
- New CORC Cable-In-Conduit Conductors
- Six-Around-One CORC Cable
- Joint Terminals
- Jacketing and Cooling
- Conclusion and Outlook

Introduction

CORC (Conductor On Round Core)

Flexible, Round, Stable ReBCO Wires and Cables

UNIVERSITY OF TWENTE.

Introduction

First ReBCO CORC Cable-In-Conduit-Conductor (2016)

- Six-Around-One Layout
- ✤ Aluminum alloy jacket
- Liquid Bath Cooling (LN₂ & LHe)
- Testing of Production Techniques
- ✤ 48 kA @ 4K/10T and 13 kA @ 77K/Self-Field

1700 mm

Two New CORC Cable-In-Conduit Conductors

Detector magnets and Bus Bars

- High thermal & electrical stability
- Practical cooling
- ✤ 80 kA at 12T/4K

UNIVERSITY OF TWENTE.

Advanced Conductor Technologies LLC www.advancedconductor.com

Fusion magnets

- Can sustains High Stress
- Can Cope with large heat loads
- ✤ 80 kA at 12T/4K

Sample Dimensions

CORC Strands

	2016 Sample	CORC CICC for Fusion	CORC CICC for Detectors
Nr. of tapes	38	42	42
Nr. of layers	12	14	14
Таре Туре	SCS 4050	SCS 4050	SCS 4050
Copper plating [µm]	40	10	10
Core Material	Aluminum	Copper	Copper
Solid Core Diameter [mm]	4	5	4
Core Diameter [mm]	5.2	5.4	5.4
Outer diameter [mm]	7.6	7.7	7.7
Strand Current density (4K/12T) [A/mm ²]	154	300	300

Cable Winding

Cabling:

- Cabling of the six-around-one cable is done manually
- A cable pitch is 400 mm
- 4.5 pitches in between the joint terminals

Joint Terminals

CORC CICC Joint Terminals

- Solder filled
- Tapered Stands
- Embedded conduction cooling

Temperature (K)	Bottom Terminal Resistance (nΩ)	Top Terminal Resistance (nΩ)	Loop Resistance (nΩ)
5	1.7	1.5	6.4
10	2.0	1.7	7.5
30	4.0	3.0	14
50	6.5	5.4	24

Current Distribution

- Short sample current distributed in terminals
- Strands are tapered
- Strands are straight inside the terminal
- Half a cable pitch difference between terminals

Current Injection Current Extraction Current Extraction

Advanced Conductor Technologies LLC

Current Distribution

Full pitch between terminals

Half pitch between terminals

Experimental Results (2016)

Jacket Design

Jacket to Joint connection

Electron Beam welded to the jacket

Vacuum brazed to the copper terminals

Vacuum brazed to thecopper cooling tubes

Same procedure for the copper jacket to terminal connection

Advanced Conductor Technologies LLC

Cooling Scheme for the SULTAN test

Expected Performance

UNIVERSITY OF TWENTE.

www.advancedconductor.com

Advanced Conductor Technologies LLC

Final Product

Final Product

Conclusions And Outlook

- ✓ Two New 2.8 m long CORC Cable-In-Conduit Conductors are manufactured
- ✓ Both conductors are rated for 80 kA @ 12T/4K
- ✓ First conductor has a copper jacket and conduction cooling
- ✓ Second conductor has stainless steel jacket and internal forced flow cooling
- ✓ Terminals feature 2 n Ω @ 4 K and 6 n Ω @ 50 K
- ✓ Measurements are scheduled for next August
- ✓ Research on CORC is ongoing, more CORC wires and CORC CICCs are expected!

