A-M Valente-Feliciano

Development of NbTiN based multi-layered structures for SRF applications

Thomas Jefferson National Accelerator Facility is managed by Jefferson Science Associates, LLC, for the U.S. Department of Energy's Office of Science

Acknowledgements

Jefferson Lab I I I U œ saclay CERN **KU LEUVEN** 🛎 STFC STe(

D.R. Beverstock, G. Eremeev, O. Trofimova, J. Spradlin , C. Reece

T. Proslier

- S. Aull, H. Neupert
- T. Kubo
- V. Khouzenikov
- F. Stevie & Group
- J. Skusa

- R. Valizadeh
- A. Gurevich
- A. Sutter

T. Junginger

Prof. A. Lukaszew & Group, Prof. M. Kelley

SRF Application beyond Nb: SIS Multilayers

x (nm)

Taking advantage of the high –T_c superconductors with much higher H_c without being penalized by their lower H_{c1}...

Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006) Alex Gurevich, AIP ADVANCES 5, 017112 (2015) T. Kubo, Applied Physics Letters 104, 032603 (2014)

Multilayer coating of SC cavities: alternating SC and insulating layers with d < λ

Higher T_c thin layers provide magnetic screening of the Nb SC cavity (bulk or thick film) without vortex penetration

- Strong increase of H_{fp} in films allows using RF fields > H_c of Nb, but lower than those at which flux penetration in grain boundaries may become a problem=> no transition, no vortex in the layer
- □ High H_{fp} ,applied field is damped by each layer
- Insulating layer prevents Josephson coupling between layers
- Applied field, i.e. accelerating field can be increased without high field dissipation
- □ SC layers with higher T_c , Δ (Nb₃Sn, NbN, etc.) => Strong reduction of R_{BCS} (ie high Q_0)

150 Possibility to move operation from 2K to 4.2K

A-M Valente-Feliciano - CEC/ICMC2017, Madison WI – 07/10/2017

Base pressure range: 10⁻¹⁰ Torr

- □ dc-Magnetron Sputtering (reactive mode)
- HiPIMS (Huettinger 2000 V, 3000 A)
- Central sample stage

Substrates:

MgO (ideal) AlN ceramic (worst case) Bulk Nb ECR Nb films

Jefferson Lab

NbTiN Films – Influence of Thickness on Tc

A-M Valente-Feliciano - CEC/ICMC2017, Madison WI – 07/10/2017

Secondary Electron Yield of NbTiN Films

Dielectric Behavior

At 450 °C, 30 nm AIN films exhibit dielectric properties of polycrystalline AIN films n in the range of 1.98- 2.15

AIN Films

Structure

AlN films were coated by reactive sputtering with different parameters. They were found to become fully transparent for N_2 /Ar ratios of ~33%.

Good quality AIN are readily produced at 600 and 450°C by dc-reactive magnetron sputtering.

The films exhibit the cubic structure (single crystal) at 600 °C and the hexagonal structure (polycrystalline) at 450 °C.

NbTiN/AIN bi-layers – Influence of thickness on Tc

SRF Multilayer Structures Based on NbTiN Influence of coating temperature

NbTiN/AlN/Nb film at 600 °C

	AIN	NbTiN
N ₂ /Ar	0.33	0.23
Total pressure [Torr]	2x10 ⁻³	2x10 ⁻³
Sputtering Power [W]	100	300
Deposition rate [nm/min]	~ 2.5	~ 18
Thickness [nm]	5	100
Т _с [К]	N/A	14

TEM cross-section (FIB cut) of NbTiN/AIN/Nb/Cu structure

Miscibility of AIN into Nb and NbTiN at 600 °C

sample2_006.tif JLAB sample #2 Print Mag: 555000x @7.0 in 12:05 07/25/11 TEM Mode: Imaging

20 nm HV=200.0kV Direct Mag: 100000x X:Y: T: AIF @ NCSU

A-M Valente-Feliciano - CEC/ICMC2017, Madison WI – 07/10/2017

Development of SIS NbTiN/AIN structures on Nb surfaces

CEC/ICMC 2017 Product Information

A-M Valente-Feliciano - CEC/ICMC2017, Madison WI – 07/10/2017

100

40 λ [nm]

NbTiN/AIN Films (SI) – Flux penetration

RF characterization of NbTiN/AlN/Nb structures

SIS structures coated on ECR Nb/Cu film: 24h-bake, coating and annealing for 4 h at 450°C.

NbTiN based SIS Optimization

 $\rm H_{C2}$ measurements via constrains MR in pulsed field - KU Leuven

NbTiN based SIS Optimization

□ **RF measurement** for SIS NbTiN/AIN structures on previously characterized bulk Nb **QPR samples**.

A-M Valente-Feliciano - CEC/ICMC2017, Madison WI – 07/10/2017

Conclusions

✓ Good quality standalone NbTiN & AlN layers

- ✓ SIS NbTiN/AIN layers with a $T_{c, NbTiN}$ between 16.6 and 16.9 K.
 - Growth conditions for SIS structures need to be a compromise between optimum conditions for standalone films and minimizing interaction between layers.
- H_{fp} enhancement (SQUID magnetometry) observed for 150 nm NbTiN films.
- Completion of H_{fp} enhancement versus thickness under way (Kubo curves)
- RF characterization of NbTiN/AIN structures coated on Nb surfaces reveal a promise of delaying flux penetration and lower RF losses for SIS coated Nb surfaces, both bulk and thick film.

