

Digital Readout for Cryogenic Detectors using Superconductor Integrated Circuits

Timur V. Filippov, Dmitri E. Kirichenko,Anubhav Sahu, Masoud Radparvar,M. Eren Celik, and Deepnarayan Gupta

HYPRES, Inc 175 Clearbrook Road, Elmsford, NY 10523

Superconductor fast digitizers and low-power logic are well suited for sensor array readout, enabling precise pulse timing and digital multiplexing.

We can do both

- Digital time-division multiplexing
- Time-of-arrival measurements

Digital Time-Division Multiplexing Readout Circuit for Sensor Arrays

Synchronous 4-Channel Front-End

Signal Variations at each Channels

CHANNEL NAME	SIGNAL NAME	TEST PATTERN 1	TEST PATTERN 2	TEST PATTERN 3
CH1	SIG1	f _c	f _c /2	NO SIG
CH2	SIG2	f _c /8	f _c /2	NO SIG
СНЗ	SIG3	f _c /4	f _c /2	NO SIG
CH4	SIG4	f _c /2	f _c /2	NO SIG

Design Components: Multiplexer

Accumulator and P2S Converter

12345678 **C** $f_{\rm C}/8: 256/8=2^5 \rightarrow 00000100$

 $f_{\rm C}/4:256/4=2^6 \rightarrow 000000100$

 $f_{\rm C}/2:256/2=2^7 \rightarrow 00000010$

 f_{C} : 256 = 2⁸ \rightarrow 00000000 1

Chip Layout

LOW FREQUENCY TESTING AT MONITOR LEVEL (1)

CIRCULATING ORDER: CH1,CH2,CH3,CH4 CARRY PULSE AT THE END OF CH1 IF f_c APPLIED FRAME PULSE AT THE BEGINNING OF CH4

LOW FREQUENCY TESTING AT MONITOR LEVEL (2)

LOW FREQUENCY TESTING AT DRIVER LEVEL

KEY FEATURES: CIRCULATING ORDER CH1,CH2,CH3,CH4 FRAME PULSE AT THE BEGINNING OF CH3

CH1

CH2

CH3

CH4

f_c

f_c/8

 $f_c/4$

 $f_c/2$

OF READ PULSES: 6 7 8 STORED NUMBER: 2⁵ 2⁶ 2⁷ DATA RATE: f_c/8 f_c/4 f_c/2

HIGH FREQUENCY TESTING @6.4GHz

CH1	f _c	f _c /2	NS	1
CH2	f _c /8	f _c /2	NS	
СНЗ	f _c /4	f _c /2	NS	
CH4	f _c /2	f _c /2	NS	

CIRCULATING ORDER CH1,CH2,CH3,CH4 FRAME PULSE AT THE BEGINNING OF CH3 # OF READ PULSES: 6 7 8 STORED NUMBER: 2^5 2^6 2^7 DATA RATE: $f_c/8$ $f_c/4$ $f_c/2$

HIGH FREQUENCY TESTING @12.8GHz

Signal Reconstruction

Digital SNSPD Readout

Digital SNSPD Readout

- SNSPD Output: Fast rise-time (~100 ps) pulse, 10-20 µA
- Requirement: Precise measurement of time-of-arrival
 - High clock speed (time-to-digital conversion)
 - Power consumption ~ 10 μW
- Time-of-arrival of photons measured as the number (n) of clock periods (τ_{clk}) in a frame of N clock periods
 - > Discrete time resolution τ_{clk} ~30 ps
 - > Count Rate = $1/\tau_{\text{frame}} \sim 65 \text{ MHz}$
 - Counting of clock pulses started at the beginning of a frame and stopped at the arrival of the first SNSPD output pulse

Readout Chip Test with On-chip Data Generator

O. A. Mukhanov and S. R. Rylov, "Time-to-digital converters based on RSFQ digital counters," IEEE Trans. Appl. Supercond., vol. 7, pp. 2669-2672, June 1997.

A. Kirichenko, S. Sarwana, D. Gupta, I. Rochwarger, and O. Mukhanov, "Multi Channel Time Digitizing Systems," IEEE Trans. Appl. Supercond., vol. 13, pp. 454-458, June 2003

RSFQ vs ERSFQ: power consumption

Power consumption balance: (10+100)nW→(10+0)nW

Digital Readout Chip for 4 SNSPDs

	DATA GEN MON
	CLOCK MON
	SERIAL MON
	CARRY MON
	FRAME DRV
	SERIAL DRV
00000000	DATA DRV

	DATA GEN MON
	CLOCK MON
	FRAME MON
	SERIAL MON
	CARRY MON
	FRAME DRV
	SERIAL DRV
1000000	DATA DRV

	DATA GEN MON
	CLOCK MON
	FRAME MON
	- SERIAL MON
	CARRY MON
	FRAME DRV
	SERIAL DRV
01000000	DATA DRV

	- DATA GEN MON
	CLOCK MON
	FRAME MON
	SERIAL MON
	CARRY MON
	FRAME DRV
	SERIAL DRV
11111111	DATA DRV

	DATA GEN MON
	CLOCK MON
	SERIAL MON
	CARRY MON
	FRAME DRV
	SERIAL DRV
00000000	DATA DRV

Power Consumption and Scalability

All power numbers in µW		Conservative Design (I _{c-avg} = 250µA, V _{bias} = 2.6mV)	Optimized Design	Scaled RSFQ (I _{c-avg} = 125 μA, V _{bias} = 1mV)
	4 digitizers + routing	37.20	22.80	4.38
	PTL field	17.60	5.50	1.06
RSFQ	Master clock-in	25.80	25.80	4.96
	3 Output drivers	109.20	11.47	2.21
	RSFQ total:	189.8	65.6	12.6
	Clock routing	0.44	0.44	0.44
	Synchronizer	1.14	1.14	1.14
	Aggregation block	0.90	0.90	0.90
eRSFQ	Interface to frequency divider	2.00	2.00	2.00
	Frequency divider	1.36	1.36	1.36
	Switch and pulse distribution	3.63	3.63	3.63
	Counter and serializer	6.39	6.39	6.39
	eRSFQ total @32GHz:	15.9	15.9	15.9
	Chip total:	205.7	81.4	28.5

Power Consumption and Scalability (contd.)

		4-SNSPD Readout	8-SNSPD Readout	16-SNSPD Readout
	All power numbers in µW	Scaled RSFQ (I _{c-avg}	Scaled RSFQ (I _{c-avg}	Scaled RSFQ (I _{c-avg}
		= 125 µA, V _{bias} =	= 125 µA, V _{bias} =	= 125 μ A, V _{bias} =
		1mV)	1mV)	1mV)
	4 digitizers + routing	4.38	8.77	17.54
	PTL field	1.06	2.12	4.23
RSFQ	Master clock-in	4.96	4.96	4.96
	3 Output drivers	2.21	2.21	2.21
	RSFQ total:	12.61	18.05	28.94
	Clock routing	0.44	0.44	0.44
	Synchronizer	1.14	2.28	4.56
	Aggregation block	0.90	1.80	3.60
eRSFQ	Interface to frequency divider	2.00	2.00	2.00
eksrų	Frequency divider	1.36	1.36	1.36
	Switch and pulse distribution	3.63	3.63	3.63
	Counter and serializer	6.39	6.39	6.39
	eRSFQ total @32GHz:	15.9	17.9	22.0
	Chip total:	28.5	36.0	50.9
Power Consumption per SNSPD		7.1	4.5	3.2

Converting to SFQ5EE process at MIT/LL

We designed both RSFQ and ERSFQ 6-bit counters using MIT/LL SFQ5EE process

tvI03_ed_003: 6b counter

tvI03_ed_003: 6b counter

ERSFQ counter is 22.5 times smaller in area by converting to SFQ5EE

Test Results

RSFQ margins: 41mA-68mA

ERSFQ margins: 45mA-65mA Critical Current 51mA

4-channel SNSPD Aggregating Readout Chip

2 readouts (ERSFQ and RSFQ) are placed on the same chip

4-channel SNSPD Aggregating Readout Chip

2 readouts (ERSFQ and RSFQ) are placed on the same chip

4-channel SNSPD Aggregating Readout Chip

4 mm

2 readouts (ERSFQ and RSFQ) are placed on the same chip

Conclusion

Digital TDM Readout

- By means of embedded pattern generators we proved the correct operation of each channel and of all 4 channels combined at frequencies up to 12.8 GHz.
- We were able to perform reconstruction of signal applied to individual ADC.

Time-to-Digital Readout for SNSPDs

- > Current sensitivity (ΔI) < 10 μA
- Preserves fast rise times (< 100 ps)</p>
- Time-of-arrival can be measured with 30 ps digital resolution
- Low power, scalable eRFSQ circuitry
- ERSFQ digital circuit density is 22.5X higher with 8-layer MIT/LL process than 4-layer HYPRES process
- > The goal of 10 μ W per SNSPD is reachable.

- Digital TDM readout was supported in part by a grant from DOE office of Nuclear Physics
- **TDC** readout was supported by MIT/LL
- New RSFQ/ERSFQ Counters for MIT/LL SFQ5ee process was supported by a research grant from the Office of Naval Research
- The authors would like to thank
 - HYPRES and MIT/LL fab teams for fabricating the chips,
 - > Andrew J. Kerman, Eric Dauler for fruitful discussions,
 - Igor Vernik for preliminary testing,
 - Denis Amparo for taking photographs.