Digital Readout for Cryogenic Detectors using Superconductor Integrated Circuits

Timur V. Filippov, Dmitri E. Kirichenko, Anubhav Sahu, Masoud Radparvar, M. Eren Celik, and Deepnarayan Gupta

HYPRES, Inc
175 Clearbrook Road, Elmsford, NY 10523
Objectives

- Superconductor fast digitizers and low-power logic are well suited for sensor array readout, enabling precise pulse timing and digital multiplexing.

- We can do both
 - Digital time-division multiplexing
 - Time-of-arrival measurements
Digital Time-Division Multiplexing Readout Circuit for Sensor Arrays
Block Diagram

\[f_C = f_S = \frac{f_C}{2^8} \]
\[f_P = \frac{f_C}{2^{10}} = \frac{f_S}{2^2} \]
\[f_R = \frac{f_C}{2^5} = 2^3 f_S \]
Signal Variations at each Channels

<table>
<thead>
<tr>
<th>CHANNEL NAME</th>
<th>SIGNAL NAME</th>
<th>TEST PATTERN 1</th>
<th>TEST PATTERN 2</th>
<th>TEST PATTERN 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>SIG1</td>
<td>f_c</td>
<td>$f_c/2$</td>
<td>NO SIG</td>
</tr>
<tr>
<td>CH2</td>
<td>SIG2</td>
<td>$f_c/8$</td>
<td>$f_c/2$</td>
<td>NO SIG</td>
</tr>
<tr>
<td>CH3</td>
<td>SIG3</td>
<td>$f_c/4$</td>
<td>$f_c/2$</td>
<td>NO SIG</td>
</tr>
<tr>
<td>CH4</td>
<td>SIG4</td>
<td>$f_c/2$</td>
<td>$f_c/2$</td>
<td>NO SIG</td>
</tr>
</tbody>
</table>
Design Components: Multiplexerer
Accumulator and P2S Converter

1. $f_c/8 : 256/8 = 2^5 \Rightarrow 00000100 \ 0$
2. $f_c/4 : 256/4 = 2^6 \Rightarrow 00000010 \ 0$
3. $f_c/2 : 256/2 = 2^7 \Rightarrow 00000001 \ 0$
4. $f_c : 256 = 2^8 \Rightarrow 00000001 \ 1$
Chip Layout

Front-End #1
Front-End #2
Clock Input
Front-End #3
Front-End #4
P2S converter
Accumulator
Output drivers
Multiplexer
Clock Controller
PTLs
Synchronizer
10mm x 10mm
LOW FREQUENCY TESTING AT MONITOR LEVEL (1)

<table>
<thead>
<tr>
<th></th>
<th>f_c</th>
<th>f_c/2</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH2</td>
<td>f_c/8</td>
<td>f_c/2</td>
<td>NS</td>
</tr>
<tr>
<td>CH3</td>
<td>f_c/4</td>
<td>f_c/2</td>
<td>NS</td>
</tr>
<tr>
<td>CH4</td>
<td>f_c/2</td>
<td>f_c/2</td>
<td>NS</td>
</tr>
</tbody>
</table>

CIRCULATING ORDER: CH1, CH2, CH3, CH4
CARRY PULSE AT THE END OF CH1 IF f_c APPLIED
FRAME PULSE AT THE BEGINNING OF CH4
LOW FREQUENCY TESTING AT MONITOR LEVEL (2)
LOW FREQUENCY TESTING AT DRIVER LEVEL

<table>
<thead>
<tr>
<th></th>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc</td>
<td>f_c</td>
<td>f_c/2</td>
<td>f_c</td>
<td>f_c/2</td>
</tr>
<tr>
<td>f_c/8</td>
<td>f_c/2</td>
<td>f_c</td>
<td>f_c/2</td>
<td>NS</td>
</tr>
<tr>
<td>f_c/4</td>
<td>f_c/2</td>
<td>f_c</td>
<td>f_c/2</td>
<td>NS</td>
</tr>
<tr>
<td>f_c/2</td>
<td>f_c/2</td>
<td>f_c</td>
<td>f_c/2</td>
<td>NS</td>
</tr>
</tbody>
</table>

KEY FEATURES:
1. CIRCULATING ORDER CH1, CH2, CH3, CH4
2. FRAME PULSE AT THE BEGINNING OF CH3
3. STORED NUMBER: 2^5, 2^6, 2^7
4. DATA RATE: f_c/8, f_c/4, f_c/2

OF READ PULSES: 6, 7, 8
HIGH FREQUENCY TESTING @6.4GHz

KEY FEATURES:
- **CIRCULATING ORDER CH1,CH2,CH3,CH4**
- **FRAME PULSE AT THE BEGINNING OF CH3**

DATA-RS:
- 2^6 $f_c/4$
- 2^7 $f_c/2$
- 2^8 f_c
- 2^5 $f_c/8$

READ:
- 7
- 8
- 6

FRAME:
- CH3
- CH4
- CH1
- CH2

SOURCE:
- Automatic (Auto)

DATA RATE:
- $f_c/8$
- $f_c/4$
- $f_c/2$

STORED NUMBER:
- 2^5
- 2^6
- 2^7

OF READ PULSES:
- 6
- 7
- 8

Table:

<table>
<thead>
<tr>
<th>CH</th>
<th>f_c</th>
<th>$f_c/2$</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH2</td>
<td>$f_c/8$</td>
<td>$f_c/2$</td>
<td>NS</td>
</tr>
<tr>
<td>CH3</td>
<td>$f_c/4$</td>
<td>$f_c/2$</td>
<td>NS</td>
</tr>
<tr>
<td>CH4</td>
<td>$f_c/2$</td>
<td>$f_c/2$</td>
<td>NS</td>
</tr>
</tbody>
</table>
KEY FEATURES:
- Circulating Order CH1, CH2, CH3, CH4
- Frame Pulse at the beginning of CH3
- # of Read Pulses: 6, 7, 8
- Stored Number: 2^6, 2^6, 2^7
- Data Rate: $f_c/8$, $f_c/4$, $f_c/2$
Signal Reconstruction

Clock: 8GHz
Signal: 156.25kHz
Signal amplitude: 300mVpp

Clock: 8GHz
Signal: 156.25kHz
Signal amplitude: 50mVpp
Digital SNSPD Readout
Digital SNSPD Readout

- SNSPD Output: Fast rise-time (~100 ps) pulse, 10-20 µA
- Requirement: Precise measurement of time-of-arrival
 - High clock speed (time-to-digital conversion)
 - Power consumption ~ 10 µW
- Time-of-arrival of photons measured as the number (n) of clock periods (τ_{clk}) in a frame of N clock periods
 - Discrete time resolution τ_{clk} ~30 ps
 - Count Rate = $1/\tau_{frame}$ ~ 65 MHz
 - Counting of clock pulses started at the beginning of a frame and stopped at the arrival of the first SNSPD output pulse
Readout Chip Test with On-chip Data Data Generator

RSFQ vs ERSFQ: power consumption

Per L-JJ pair: $P_d = 0$ W

Per L-JJ pair: $P_d = 0$ W

Per resistor: $P_s \sim 100 \text{nW}$

Per Junction: $P_d \sim 10 \text{nW}$

Per Junction: $P_d \sim 10 \text{nW}$

Power consumption balance: $(10+100) \text{nW} \rightarrow (10+0) \text{nW}$
Digital Readout Chip for 4 SNSPDs

- 4 Digitizers
- Data generator
- PTL field
- Master clock-in
- Clock routing
- Aggregation block
- Interface to frequency divider
- Frequency divider
- SNSPD chip to be placed
- 4 Digitizers (A,B,C,D) for test experiments
- SFQ/dc converters
- Synchronizer
- Accumulator and P2S converter
- Output drivers
- On-off switch and pulse distribution
- 10mmx10mm
Time Delay = 0
Time Delay = 1
Time Delay = 2
Time Delay = 3
Time Delay = 510
Time Delay = 511
Time Delay = 0
Power Consumption and Scalability

<table>
<thead>
<tr>
<th></th>
<th>Conservative Design (I_{c-avg} = 250\mu A, V_{bias} = 2.6mV)</th>
<th>Optimized Design</th>
<th>Scaled RSFQ (I_{c-avg} = 125 \mu A, V_{bias} = 1mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSFQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 digitizers + routing</td>
<td>37.20</td>
<td>22.80</td>
<td>4.38</td>
</tr>
<tr>
<td>PTL field</td>
<td>17.60</td>
<td>5.50</td>
<td>1.06</td>
</tr>
<tr>
<td>Master clock-in</td>
<td>25.80</td>
<td>25.80</td>
<td>4.96</td>
</tr>
<tr>
<td>3 Output drivers</td>
<td>109.20</td>
<td>11.47</td>
<td>2.21</td>
</tr>
<tr>
<td>RSFQ total:</td>
<td>189.8</td>
<td>65.6</td>
<td>12.6</td>
</tr>
<tr>
<td>eRSFQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock routing</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Synchronizer</td>
<td>1.14</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>Aggregation block</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Interface to frequency divider</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency divider</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
</tr>
<tr>
<td>Switch and pulse distribution</td>
<td>3.63</td>
<td>3.63</td>
<td>3.63</td>
</tr>
<tr>
<td>Counter and serializer</td>
<td>6.39</td>
<td>6.39</td>
<td>6.39</td>
</tr>
<tr>
<td>eRSFQ total @32GHz:</td>
<td>15.9</td>
<td>15.9</td>
<td>15.9</td>
</tr>
<tr>
<td>Chip total:</td>
<td>205.7</td>
<td>81.4</td>
<td>28.5</td>
</tr>
</tbody>
</table>

Optimized design: SFQ/DC drivers, Eliminate test pattern generator and associated circuitry
Power Consumption and Scalability (contd.)

<table>
<thead>
<tr>
<th>Component</th>
<th>4-SNSPD Readout</th>
<th>8-SNSPD Readout</th>
<th>16-SNSPD Readout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled RSFQ ($I_{c\text{-avg}} = 125 \mu A, V_{bias} = 1mV$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All power numbers in μW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 digitizers + routing</td>
<td>4.38</td>
<td>8.77</td>
<td>17.54</td>
</tr>
<tr>
<td>PTL field</td>
<td>1.06</td>
<td>2.12</td>
<td>4.23</td>
</tr>
<tr>
<td>Master clock-in</td>
<td>4.96</td>
<td>4.96</td>
<td>4.96</td>
</tr>
<tr>
<td>3 Output drivers</td>
<td>2.21</td>
<td>2.21</td>
<td>2.21</td>
</tr>
<tr>
<td>RSFQ total:</td>
<td>12.61</td>
<td>18.05</td>
<td>28.94</td>
</tr>
<tr>
<td>Clock routing</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Synchronizer</td>
<td>1.14</td>
<td>2.28</td>
<td>4.56</td>
</tr>
<tr>
<td>Aggregation block</td>
<td>0.90</td>
<td>1.80</td>
<td>3.60</td>
</tr>
<tr>
<td>Interface to frequency divider</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Frequency divider</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
</tr>
<tr>
<td>Switch and pulse distribution</td>
<td>3.63</td>
<td>3.63</td>
<td>3.63</td>
</tr>
<tr>
<td>Counter and serializer</td>
<td>6.39</td>
<td>6.39</td>
<td>6.39</td>
</tr>
<tr>
<td>eRSFQ total @32GHz:</td>
<td>15.9</td>
<td>17.9</td>
<td>22.0</td>
</tr>
<tr>
<td>Chip total:</td>
<td>28.5</td>
<td>36.0</td>
<td>50.9</td>
</tr>
<tr>
<td>Power Consumption per SNSPD</td>
<td>7.1</td>
<td>4.5</td>
<td>3.2</td>
</tr>
</tbody>
</table>

All power numbers in μW.
Converting to SFQ5EE process at MIT/LL
We designed both RSFQ and ERSFQ 6-bit counters using MIT/LL SFQ5EE process
tvl03_ed_003: 6b counter

- Data in
- Frame clock in
- Read clock in
- Data out
- Carry out
- Frame clock out
- Read clock out
- Data in

Feeding JTLs
6b counter
ERSFQ
Pulse distribution network
P2S converter
ERSFQ counter is 22.5 times smaller in area by converting to SFQ5EE
Test Results

RSFQ margins: 41mA-68mA
ERSFQ margins: 45mA-65mA
Critical Current 51mA
2 readouts (ERSFQ and RSFQ) are placed on the same chip.
2 readouts (ERSFQ and RSFQ) are placed on the same chip
4-channel SNSPD Aggregating Readout Chip

2 readouts (ERSFQ and RSFQ) are placed on the same chip
Conclusion

- **Digital TDM Readout**
 - By means of embedded pattern generators we proved the correct operation of each channel and of all 4 channels combined at frequencies up to 12.8 GHz.
 - We were able to perform reconstruction of signal applied to individual ADC.

- **Time-to-Digital Readout for SNSPDs**
 - Current sensitivity (ΔI) < 10 µA
 - Preserves fast rise times (< 100 ps)
 - Time-of-arrival can be measured with 30 ps digital resolution
 - Low power, scalable eRFSQ circuitry
 - ERSFQ digital circuit density is 22.5X higher with 8-layer MIT/LL process than 4-layer HYPRES process
 - The goal of 10µW per SNSPD is reachable.
Digital TDM readout was supported in part by a grant from DOE office of Nuclear Physics

TDC readout was supported by MIT/LL

New RSFQ/ERSFQ Counters for MIT/LL SFQ5ee process was supported by a research grant from the Office of Naval Research

The authors would like to thank

- HYPRES and MIT/LL fab teams for fabricating the chips,
- Andrew J. Kerman, Eric Dauler for fruitful discussions,
- Igor Vernik for preliminary testing,
- Denis Amparo for taking photographs.