Low Cost High Performance Magnetocaloric Materials for Sub 50K Refrigeration Applications

Dr. Robin Ihnfeldt¹, Prof. Emeritus Sungho Jin¹, Prof. Renkun Chen², Dr. Xia Xu¹, Elizabeth Caldwell², and Eunjeong Kim²

¹General Engineering & Research, L.L.C.
²University of California, San Diego
Materials Science Department

Funded by the U.S. Department of Energy
Outline

- Who we are
- Motivation
- Background
 - Define MCE
 - Current state of the Industry
 - Magnetic Refrigeration Challenges
- Phase I Work
 - Objectives
 - Results
- Future Work
GE&R Background

- Founded in 2009
 - Industry Experience – Semiconductor/ Pharmaceuticals/ Medical Device/ Oil refining, Licensed Patent Agent
 - GE&R Advisor Board
 - Ted Taylor - Micron R&D Fab Manager / Director at Cymer
 - Steve Oldenburg – President of NanoComposix
 - Professor Jan Talbot – Head of UCSD ChemE dept.
- Current employees
 - 4 full time employees, 3 UCSD graduate students, 2 Prof.

Thermoelectrics
R&D Grant NRL – $2.4M for 6 yrs - Cooling Technology

Magnetocalorics
- DOE STTR Phase I Awarded June 2016 –
- Phase II award pending (July 31)
- CALSeed Awarded June 2017

CMP Slurries
NSF SBIR Funded (I,II, IIB)
Development of nano-capsules
Stober Silica Nanoparticles

Other Applications

BioApplications
- Drug Delivery
- Bone Tissue Engineering

Collaboration with UCSD

UC San Diego Jacobs School of Engineering
Team Members

PI – Dr. Robin Ihnfeldt, GE&R -nanomaterials

Professor Emeritus Sungho Jin, UCSD -Magnetic materials -nanomaterials

Professor Chen, UCSD -nanomat.

Dr. Xia Xu -magnetic nanomaterials

Grad. Student – Kim Jeong

Grad. Student – Lizzie Caldwell
Motivation

Magnetocaloric Effect

The variation in temperature of a magnetic material when exposed to a change in magnetic field, H.

Enable Fuel Cells Vehicles - Hydrogen
Hydrogen Storage – Liquid
Magnetic Refrigeration utilizes the magnetocaloric effect (MCE) – Efficient and Green

VCC for Hydrogen liquefaction – low efficiency (~12% of Carnot) [Haberbusch 2009]

Magnetic hydrogen liquefaction - Dr. Numazawa at the National Institute for Materials Science in Japan achieved ~60% of Carnot.

Magnetic Refrigeration promising – majority of work focused on room temperature applications
MCE Material Costs

- MCE Materials typically Rare-Earth - $ to $$$$.
- Processing to obtain MCE properties – cost varies.
- Limited Commercially Available MCE materials
 (the materials available are not that good).

Rare Earth

<table>
<thead>
<tr>
<th>Element</th>
<th>Cost (USD/kg)</th>
<th>Cost (USD/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td>7<sup>a</sup></td>
<td>110</td>
</tr>
<tr>
<td>Dy</td>
<td>350<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>650<sup>b</sup></td>
<td>280</td>
</tr>
<tr>
<td>Eu</td>
<td>200000<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>120<sup>b</sup></td>
<td>235</td>
</tr>
<tr>
<td>Ho</td>
<td>8600<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>7<sup>a</sup></td>
<td>110</td>
</tr>
<tr>
<td>Nd</td>
<td>60<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>50000<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>70000<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

Non Rare Earth

<table>
<thead>
<tr>
<th>Element</th>
<th>Cost (USD/kg)</th>
<th>Cost (USD/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>3200<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>44<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>6<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>2200<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>1200<sup>b</sup></td>
<td>1720</td>
</tr>
<tr>
<td>Mn</td>
<td>2.80<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>2.35<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>300<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>1.40<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>18<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

c) Quote from Hefa Rare Earth for 1kg quantity

Magnetocaloric Effect (MCE)

- MCE material only works near T_c – need different materials to cover wide range
- Require porous matrix of MCE material – spheres or thin plates
- Heat removed using an external coolant
- Magnetic Field force
 - Permanent magnet (<1T)
 - Electromagnet or superconducting (up to 10T)
- For RT applications, permanent magnet >70% of costs*
 - Vmag
 - Hmag
- Cooling capacity of MR depends on MCE performance (ΔS)
 - MCE materials typically expensive rare-earth

Balance MCE material cost with Magnetic Field Cost

Need high PERFORMANCE MCE materials to keep cost for magnetic field reasonable!!!

MCE Compositions

$$\text{Gd}_5\text{Ge}_2\text{Si}_{2-x}\text{Sn}_x$$

| x | T_c (K) | $|\Delta S_{\text{max}}|$ (J kg$^{-1}$ K$^{-1}$) | Thermal hysteresis (K) |
|-----|-----------|---------------------------------|------------------------|
| 0.5 | 210 | 14.9 (3T) | 4 |
| 0.7 | 185 | 14.5 (3T) | 3 |
| 0.9 | 160 | 14.2 (3T) | 2 |

- RC = DS \times FWHM
First order vs. Second order transition

- **Gd** - Second order
 - Reversible
 - Typically require significant rare-earth

- **Gd₅Si₂Ge₁.₃Sn₀.₇** - First order
 - Giant MCE
 - Not entirely reversible – bad for high frequency MR
 - Thermal expansion \(\Delta L/L = (L(T) - L(T=4K))/L(T=4K) \)
 - Thermal hysteresis \(\Delta T = 4K \)
 - Relative volume change \(\Delta V/V = 2.7 \times 10^{-3} \)
 - Clausius-Clapeyron relation \(dT_C/dp = 3.2 \text{ K/kbar} \)
Hysteresis Loss in First Order Transitions

\[
\text{Ni}_{48}\text{Mn}_{35}\text{Sn}_{15}\text{Cu}_2
\]

Table

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tc (K)</th>
<th>Max ΔS at 3T (J/kg*K)</th>
<th>Hysteresis @ Tc (K)</th>
<th>FWHM</th>
<th>RCP (J/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni\textsubscript{48}Mn\textsubscript{35}Sn\textsubscript{15}Cu\textsubscript{2}</td>
<td>135</td>
<td>3.07</td>
<td>15</td>
<td>15</td>
<td>46.05</td>
</tr>
</tbody>
</table>

MCE will only take place where ΔS curves overlap!
Known MCE Materials

For 100-300K applications

<table>
<thead>
<tr>
<th>Material</th>
<th>Tc</th>
<th>H</th>
<th>ΔS max (J/kgK)</th>
<th>FWHM (K)</th>
<th>RC (J/Kg)</th>
<th>phase transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd</td>
<td>293</td>
<td>5T</td>
<td>9.5</td>
<td>80</td>
<td>760</td>
<td>2nd</td>
</tr>
<tr>
<td>Gd${0.72}$Dy${0.27}$</td>
<td>275</td>
<td>5T</td>
<td>10.5</td>
<td>120</td>
<td>2280</td>
<td>2nd</td>
</tr>
<tr>
<td>Gd${5}$Si${2}$Ge$_{2}$</td>
<td>270</td>
<td>5T</td>
<td>9.5</td>
<td>25</td>
<td>475</td>
<td>1st</td>
</tr>
<tr>
<td>Gd${5}$Si${1.9}$Ge$_{0.1}$</td>
<td>305</td>
<td>5T</td>
<td>65</td>
<td>7</td>
<td>455</td>
<td>1st</td>
</tr>
<tr>
<td>LaFe${11.5}$Si${1.5}$</td>
<td>194</td>
<td>5T</td>
<td>24.6</td>
<td>26</td>
<td>615</td>
<td>1st</td>
</tr>
<tr>
<td>LaFe${10.88}$Co${0.95}$Al$_{1.17}$</td>
<td>300</td>
<td>5T</td>
<td>9</td>
<td>55</td>
<td>495</td>
<td>1st</td>
</tr>
<tr>
<td>Ni${50}$Mn${31}$Sn$_{13}$</td>
<td>310</td>
<td>3T</td>
<td>9.5</td>
<td>64</td>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>MnFe${0.5}$As${0.5}$P$_{0.5}$</td>
<td>286</td>
<td>5T</td>
<td>16</td>
<td>20</td>
<td>320</td>
<td>1st</td>
</tr>
</tbody>
</table>

For <100K applications

<table>
<thead>
<tr>
<th>Material</th>
<th>Tc</th>
<th>H</th>
<th>ΔS max (J/kgK)</th>
<th>FWHM (K)</th>
<th>RC (J/Kg)</th>
<th>phase transition</th>
<th>Cost ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DyAl$_2$ [5]</td>
<td>65</td>
<td>5T</td>
<td>4.5</td>
<td>35</td>
<td>158</td>
<td>1st</td>
<td>$226</td>
</tr>
<tr>
<td>DyCo$_2$Al [7]</td>
<td>37</td>
<td>5T</td>
<td>16.3</td>
<td>38</td>
<td>619</td>
<td>1st</td>
<td>$207</td>
</tr>
<tr>
<td>HoAl$_2$ [5]</td>
<td>32</td>
<td>5T</td>
<td>6.5</td>
<td>17</td>
<td>111</td>
<td>1st</td>
<td>$6.5k</td>
</tr>
<tr>
<td>ErAl$_2$ [5]</td>
<td>18</td>
<td>5T</td>
<td>10.5</td>
<td>12</td>
<td>126</td>
<td>1st</td>
<td>$212</td>
</tr>
<tr>
<td>TmAl$_2$ [5]</td>
<td>10</td>
<td>5T</td>
<td>7</td>
<td>15</td>
<td>105</td>
<td>1st</td>
<td>$53k</td>
</tr>
<tr>
<td>TbCo$_2$Al [7]</td>
<td>70</td>
<td>5T</td>
<td>10.5</td>
<td>40</td>
<td>420</td>
<td>2nd</td>
<td>$33k</td>
</tr>
<tr>
<td>HoCo$_2$Al [7]</td>
<td>10</td>
<td>5T</td>
<td>21.5</td>
<td>30</td>
<td>645</td>
<td>2nd</td>
<td>$5.6k</td>
</tr>
<tr>
<td>TmCo$_2$Al [6]</td>
<td>7.5</td>
<td>5T</td>
<td>18</td>
<td>9</td>
<td>162</td>
<td>2nd</td>
<td>$46k</td>
</tr>
<tr>
<td>GGG</td>
<td>2</td>
<td>4T</td>
<td>36</td>
<td>6</td>
<td>216</td>
<td>2nd</td>
<td>$5k</td>
</tr>
<tr>
<td>MnSi</td>
<td>32</td>
<td>3T</td>
<td>2.3</td>
<td>20</td>
<td>46</td>
<td>2nd</td>
<td><$3</td>
</tr>
<tr>
<td>NdSi [8]</td>
<td>45</td>
<td>5T</td>
<td>12</td>
<td>17</td>
<td>204</td>
<td>2nd</td>
<td>$50</td>
</tr>
<tr>
<td>CeSi [4]</td>
<td>7</td>
<td>5T</td>
<td>13.7</td>
<td>10</td>
<td>137</td>
<td>2nd</td>
<td>$92</td>
</tr>
</tbody>
</table>

Costs are for materials only and do not account for processing to achieve MCE properties.

Discovered Low Cost High Performance MCE

CeSi
Tc~7K

NdSi
Tc~46K

Ce₀.5Nd₀.5Si
Tc~32K

New Patent:
NdₓCeₙ(1-x)Si
Tc tunable between 7K – 45K
Comparison to known MCE Materials

For <100K applications

<table>
<thead>
<tr>
<th>Material</th>
<th>Tc (K)</th>
<th>H (T)</th>
<th>D_S max (J/kgK)</th>
<th>FWHM (J/Kg)</th>
<th>RC (J/Kg)</th>
<th>phase.trans.</th>
<th>Cost ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DyCoAl [7]</td>
<td>37</td>
<td>5T</td>
<td>16.3</td>
<td>38</td>
<td>619</td>
<td>1st</td>
<td>$207</td>
</tr>
<tr>
<td>HoAl2 [5]</td>
<td>32</td>
<td>5T</td>
<td>6.5</td>
<td>17</td>
<td>111</td>
<td>1st</td>
<td>$6.5k</td>
</tr>
<tr>
<td>ErAl2 [5]</td>
<td>18</td>
<td>5T</td>
<td>10.5</td>
<td>12</td>
<td>126</td>
<td>1st</td>
<td>$212</td>
</tr>
<tr>
<td>TmAl2 [5]</td>
<td>10</td>
<td>5T</td>
<td>7</td>
<td>15</td>
<td>105</td>
<td>1st</td>
<td>$53k</td>
</tr>
<tr>
<td>TbCoAl [7]</td>
<td>70</td>
<td>5T</td>
<td>10.5</td>
<td>40</td>
<td>420</td>
<td>2nd</td>
<td>$33k</td>
</tr>
<tr>
<td>HoCoAl [7]</td>
<td>10</td>
<td>5T</td>
<td>21.5</td>
<td>30</td>
<td>645</td>
<td>2nd</td>
<td>$5.6k</td>
</tr>
<tr>
<td>TmCoAl [6]</td>
<td>7.5</td>
<td>5T</td>
<td>18</td>
<td>9</td>
<td>162</td>
<td>2nd</td>
<td>$46k</td>
</tr>
<tr>
<td>MnSi</td>
<td>32</td>
<td>3T</td>
<td>2.3</td>
<td>20</td>
<td>46</td>
<td>2nd</td>
<td><$3</td>
</tr>
<tr>
<td>NdSi [8]</td>
<td>45</td>
<td>5T</td>
<td>12</td>
<td>17</td>
<td>204</td>
<td>2nd</td>
<td>$50</td>
</tr>
<tr>
<td>CeSi [4]</td>
<td>7</td>
<td>5T</td>
<td>13.7</td>
<td>10</td>
<td>137</td>
<td>2nd</td>
<td>$92</td>
</tr>
</tbody>
</table>

For <100K applications

Nano-structuring

Forming micro/nanoparticles and mixing prior to anneal reduces required time

<Pellet condition>
Hand-grinding (1 hour) to form micro/nanopowder
-> hot-pressing 700 C 10 min
-> annealed at 1000 C for 4 days
Future Work

- Optimize processing
 - High performance
 - Low cost

- High stability form
 - Spheres or thin plates

- Compatibility with external coolant
 - May need to incorporate ceramic coating on material to prevent reaction with hydrogen.

- Testing in Magnetic Refrigeration Environment
 - CALSeed Funding – Awarded – build prototype
 - National Institute for Materials Science in Japan
 - Prof. Pecharsky from Caloricool
 - Industrial partners - proprietary

- Developing novel MCE materials for higher temperature applications
 - Find low cost high performance compositions for >50K applications – need to be better than current commercially available
 - Some promising techniques discovered during phase I
 - Novel compositions discovered
Acknowledgments

- Funded by the Department of Energy through a Small Business Technology Transfer Research (STTR) grant.

Contact Information

Robin Ihnfeldt, Ph.D.
(858) 736-5069
rihnfeldt@geandr.com

http://geandr.com/