

CEC Conference, July 10, 2017

Overview of different control strategies for a typical cryogenic warm compressor stations.

M. Pezzetti, B. Bradu, E. Rogez, C. Veloso

CERN, 1211 Geneva 23, Switzerland

Aknowledegments: the cryo operator team

Agenda

Introduction

- The compression station
- The control methods
 - 1. **(4+1)** PI
 - 2. Fuzzy Control PI/PD-Like
 - 3. Internal Model Control
- Methods Comparison
 - Test protocol
 - Simulation Results
- Conclusion

Introduction

- This presentation aims to show an overview of the studies that are being made about the best methods to control the **by-pass** and the **chargedischarge** systems in a compressor station.
- Work based on generic compression station configuration, not in any specific installation.
- The simulations are made in EcosimPro 5.4.19 using the CERN/CryoLib library.

Compression station set-up

 The general idea is to control the charge and discharge with the pressure in the high pressure line (HP)

And the by-pass with the pressure in the low pressure line (LP)

Кр

Error

Kawp

The control methods

Hypothesis:

- Anti Wind-Up is implied in the PIs
- Valves Behaviour
 - Do not move for too small changes in the control signal (u(t))
- PI are well tuned (Parameters calculated through the Åström-Hägglund method).

Performance and Robustness

LP regulation:

- Main goal \rightarrow Resist to disturbances
- Prevent from reaching high values → 0.2bar over the operational set-point may stops the volumetric compressor
- Faster and more precise than the HP regulation

HP regulation:

 Must perform well when facing changing on the set-point

Control Methods

Fuzzy Logic Control PID-Like

Fuzzy Logic Control PID-Like

Internal Model Control

Methods Comparison

Ecosim test protocol timeline

Simulation

Conclusion

- The PID solution still remains the best trade off between simplicity and operability.

- Both the IMC and the FLC methods improve control performances but their comprehension by operators remains an issue that could be handled using a good human machine interface (end-user oriented !!).

- This study allowed us to gather some knowledge that might be useful for more complex applications in the future and their impact on operators teams.

