

Development of Zinc-plated Regenerator Material

Mingyao Xu, Takaaki Morie and Akihiro Tsuchiya

July 12, 2017

Technology Research Center Sumitomo Heavy Industries, Ltd.

Copyright Reserved

Sumitomo Heavy Industries, Ltd.

CEC-ICMC 2017 C3OrD-4

Introduction

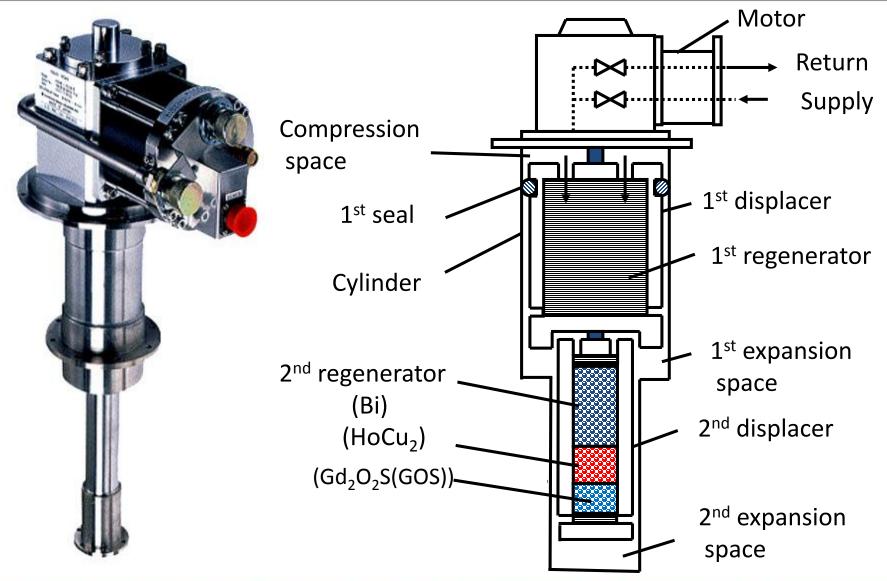
- Concepts and Fabrication Process
- > Regenerator loss
- Conventional and zinc-plated regenerator material
- > Fabrication process
- Experimental Results and Discussions
 Performance comparison

CEC-ICMC 2017 C3OrD-4

Introduction

- Concepts and Fabrication Process
- > Regenerator loss
- Conventional and tin-plated regenerator material
- Fabrication process
- Experimental Results and Discussions
 Performance comparison

- Today, lead spheres with a typical diameter of approximately 300 µm are used as regenerator materials. However, spheres have a larger pressure drop than screen discs.
- In 2014, Waldauf et al. reported that the performance of a pulse tube cryocooler was improved with a lead wire mesh. However, lead is one of the substances restricted by Restriction of Hazardous Substances (RoHS) directive.
- In 2016, Xu et al. reported that the cooling capacity of the 1st stage increased by about 14% at 40 K and 90% at 30 K when using tin-plated screens at the cold end of the 1st stage regenerator. (ICEC 26)
- However, the reliability of tin at low temperatures is still not verified fully because of its phase transition from a normal β phase to an abnormal α phase, which may result in a significant reduction of the mechanical strength.


Concepts and Fabrication Process > Regenerator loss

- Conventional and zinc-plated regenerator material
 Fabrication process
- Experimental Results and Discussions
 Performance comparison

Two-stage GM Cryocooler

CEC-ICMC 2017 C30rD-4

P.6

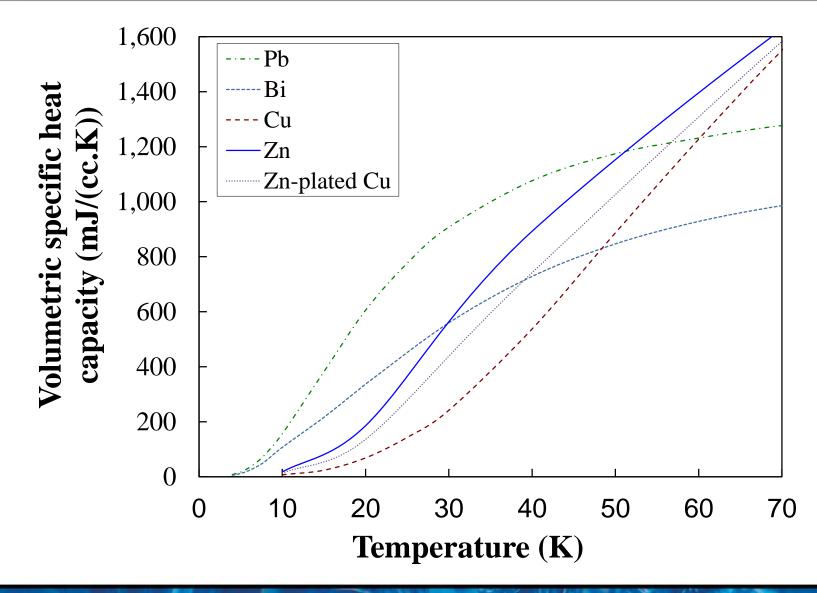
Cooling Capacity and Losses (Simulation)

CEC-ICMC 2017 C30rD-4

	1 st stage at 40 K (W)	2 nd stage at 4.2 K (W)
P-V power	90.1	19.33
Cooling capacity after considering real gas effect	89.3	3.54
Regenerator loss	-23.2	-1.85
Shuttle loss	-7.8	-0.16
Pumping loss	-0.4	-0.12
Pulse tube cooling effect in clearance/spiral groove	0	+0.02
Thermal conduction loss through walls	-5.4	-0.33
Radiation loss	-5.7	-0
Net cooling capacity	46.9	1.11

Xu M Y and Morie T, Cryocoolers 17 (2012), pp. 253-9

P.7



- Concepts and Fabrication Process
 Regenerator loss
- Conventional and zinc-plated regenerator material
 Fabrication process
- Experimental Results and Discussions
 Performance comparison

Heat Capacity

SHI 🥬

CEC-ICMC 2017 C3OrD-4

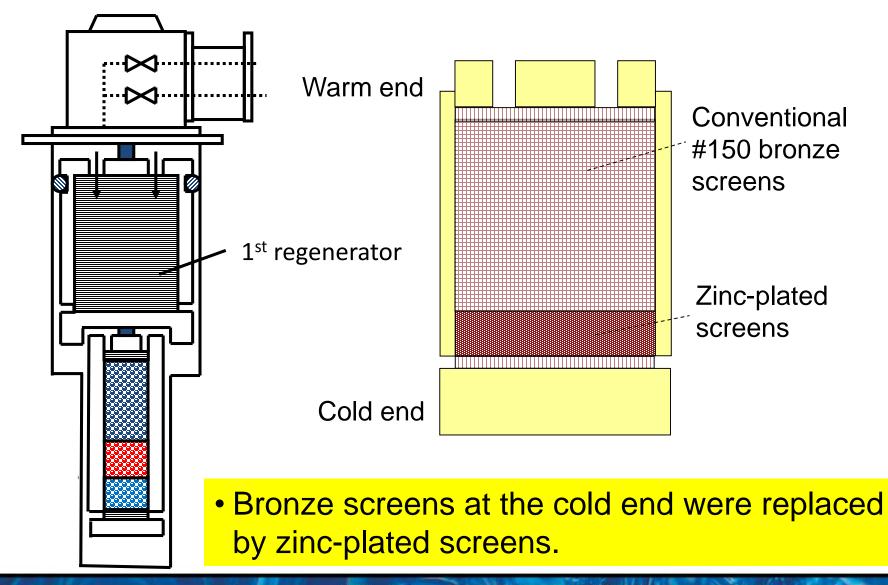
Zinc-plated Screen

CEC-ICMC 2017 C3OrD-4

Fabrication process

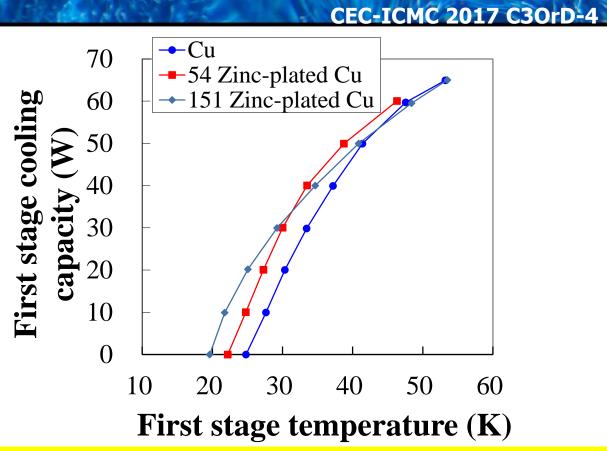
- BeforeAfterImage: AfterImage: AfterIm
 - Thickness 135 μm
- Zinc electrolyte deposition is a mature technology and commonly used in the construction industry, etc.
- Zinc can be deposited easily on copper or stainless steel screen using a common electrolyte deposition process.

- Concepts and Fabrication Process
- Regenerator loss
- Conventional and Zinc-plated regenerator material
- Fabrication process
- Experimental Results and Discussions
 Performance comparison



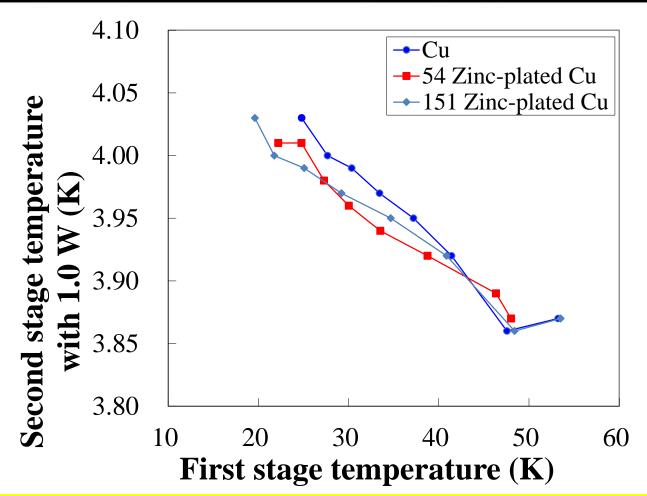
1st Stage Regenerator Configuration

P.12


CEC-ICMC 2017 C3OrD-4

Sumitomo Heavy Industries, Ltd.

1st Stage Cooling Capacity Comparison


- With only bronze screens, the cooling capacity at the 1st stage was 50 W at 41.4 K or 10 W at 27.4 K.
- With 54 discs of zinc-plated screens at the cold end, the cooling capacity at the 1st stage was 50 W at 38.8 K or 30 W at 30.0 K.

2nd Stage Cooling Capacity Comparison

CEC-ICMC 2017 C3OrD-4

• With zinc-plated screens at the cold end, the 2nd stage cooling performance was slightly better than that with bronze screens.

Cooling Performance Comparison

P.15

CEC-ICMC 2017 C30rD-4

	Warm End		Cold End		Measured First Stage Cooling Capacity		
					at 40K	at 30K	
	#150	1097	#150	100			
Case 1	bronze	discs	bronze	discs	46.6	18.7	
			Zinc-				
	#150	1097	plated	54			
Case 2	bronze	discs	screen	discs	51.6	30.0	
			Zinc-				
	#150	945	plated	151			
Case 3	bronze	discs	screen	discs	48.6	31.4	
	#150	920					
Case 4	bronze	discs	Bi sphere	335 g	50.5	33.9	
 Compared to a regenerator filled with bronze screens, the cooling capacity of the 1st stage increased about 11% at 40 K and 60% at 30 K with these zinc-plated screens. 							

- Concepts and Fabrication Process
- Regenerator loss
- Conventional and zinc-plated regenerator material
- Fabrication process
- Experimental Results and Discussions
 Performance comparison

Conclusions

P.17

- ✓ A new, low pressure loss zinc-plated screen, is proposed.
- ✓ Compared to a regenerator filled with bronze screens, the cooling capacity of the first stage increased by about 11% at 40 K and 60% at 30 K with these zinc-plated screens.
- ✓ Compared to a regenerator filled with 335 g bismuth spheres at the cold end, the first stage cooling capacity was slightly worse with a regenerator partially filled with zinc-plated screens.
- ✓ The second stage temperature with 1.0 W heat load decreased by about 0.04 K when bronze screens at the cold end were replaced by zinc-plated screens.

Thank you!

CEC-ICMC 2013 4EOrB3-02

Copyright Reserved

Sumitomo Heavy Industries, Ltd.

