Repeatability of Cryogenic Multilayer Insulation

W L Johnson¹, M Vanderlaan², J J Wood³, N O Rhys³, W Guo²,⁴, S Van Sciver²,⁴ and D J Chato¹
¹Glenn Research Center, Cleveland, OH, 44135 USA
²National High Magnetic Field Laboratory, Tallahassee, FL 32310 USA
³Yetispace, Huntsville, AL 35802 USA
⁴Florida State University, Tallahassee, FL, 32310 USA
July 12, 2017
Cryogenic Engineering Conference
By accounting for each item separately, LOX ZBO testing accurately predicted total MLI performance. More information is:

Seams

Skirt Integration

Tape, Pins & Attachments

MLI Blankets
- Traditional
- SS-MLI
- Hybrid

Penetration Integration:
- NASA-TP-2012-216315

Repeatability
Multilayer Insulation Repeatability Experiment

The objective is to quantify variation in thermal performance due to the blanket fabrication process and due to standard blanket installation processes on a well-controlled system and to determine if there is a difference in this repeatability due to the value of the warm boundary temperature. For implementation this is broken out into two objectives

- Measure the thermal performance repeatability of multiple identical MLI blankets on the same calorimeter under the same conditions with a cold boundary temperature of 20 K or 77 K and a “high” warm boundary conditions (~300 K).
- Measure the thermal performance repeatability of the same MLI system installed and reinstalled on a calorimeter multiple times.
Phases of MIRE

Two phases of MIRE:

- **Phase 1:** Directed work via Grant to Florida State University (FSU)
 - GRC provided test coupons (5)
 - 25 reflective layers
 - Two Temperature Ranges:
 - 20 K and 300 K (first series - completed)
 - 20 K and 100 K (second series – not completed)
 - Two types of repeatability
 - Between coupons
 - With same coupon

- **Phase 2:** Competed testing (awarded to Yetispace, completed)
 - Fabrication of 10 coupons
 - 10 reflective layers
 - 2 Thermocouples within each blanket
 - Temperature boundaries: 77 K to 300 K
 - Calorimeter selected by proposer (Yetispace working with FSU)
 - Testing each blanket once
Coupons to FSU for Phase 1

Cut out of previously procured MLI blankets for Multilayer Insulation Mitigation Experiment (MIME)

- Six coupons fabricated in 2010 by Sierra Lobo
 - 25 layers
 - Designed for SMiRF LH2 calorimeter
 - 60” wide, 96” long

- MIME stopped when CPST started and the old SMiRF liquid hydrogen calorimeter had too many problems to fix

- MLI blankets were stored in “bonded” storage since then
 - All coupons have since been used by IFUSI in one way or another
 - Added cover sheets to ease in handling
 - Added tapered ends for tighter radius
 - Left instrumentation in blankets (preventing damage from removal)
Results – Phase 1

The figure on the left shows a bar chart with coupons labeled 1 to 5. Each coupon has a different color and indicates the power (in W) for different temperature ranges (20 K to 300 K) and tests (1 to 5). The y-axis represents Power (W), and the x-axis represents Coupon #.

The figure on the right is a scatter plot with the Heat Flux (W/m^2) on the y-axis and Layer Density (layer/mm) on the x-axis. The data points are represented by blue and red circles.
Results – Phase 2

![Graph showing the relationship between heat flux and layer density.](image)
Statistical Analysis

ASTM E 2586

- For samples sizes less than 12, the standard deviation can be estimated by the range divide by a constant, d_2 (provided in the standard, for $n = 5$, $d_2 = 2.326$)
 - Adjusted standard deviation: 0.083 \ W
- Z-score: how many standard deviations the individual tests are from the mean

$$Z_i = \frac{(Q_i - \bar{Q})}{S}$$

<table>
<thead>
<tr>
<th>300 K to 20 K testing</th>
<th>MLI 1</th>
<th>MLI 2</th>
<th>MLI 3</th>
<th>MLI 4</th>
<th>MLI 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.159</td>
<td>1.118</td>
<td>1.113</td>
<td>1.268</td>
<td>1.075</td>
</tr>
<tr>
<td>Z-score</td>
<td>0.15</td>
<td>-0.34</td>
<td>-0.40</td>
<td>1.46</td>
<td>-0.86</td>
</tr>
<tr>
<td>Z-score (trad s)</td>
<td>0.19</td>
<td>-0.43</td>
<td>-0.51</td>
<td>1.83</td>
<td>-1.08</td>
</tr>
</tbody>
</table>

- Estimated Standard Errors
 - Mean:
 - Note: 0.017 \ W is 1.5% of the average
 - Standard Deviation:
 - $C_4(n=5) = 0.939986$
 - $0.083 - 0.066 = 0.017 < 0.028$
 - Suggests data is statistically significant

$$se(\bar{Q}) = \frac{S}{\sqrt{n}} = 0.017$$

$$se(s(Q)) = s \sqrt{1 - c_4^2} = 0.028$$
<table>
<thead>
<tr>
<th>Test Series</th>
<th>Mean, W</th>
<th>Min, W</th>
<th>Max, W</th>
<th>St. Dev, W</th>
<th>Range, W</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 K to 300 K, All Five</td>
<td>1.15</td>
<td>1.08</td>
<td>1.27</td>
<td>0.066</td>
<td>0.19</td>
<td>+/- 8.4%</td>
</tr>
<tr>
<td>20 K to 300 K, Coupon 3</td>
<td>1.06</td>
<td>0.98</td>
<td>1.15</td>
<td>0.061</td>
<td>0.17</td>
<td>+/- 8.0%</td>
</tr>
<tr>
<td>77 K to 293 K, First Five</td>
<td>2.40</td>
<td>2.05</td>
<td>2.80</td>
<td>0.27</td>
<td>0.75</td>
<td>+/- 15.6%</td>
</tr>
<tr>
<td>77 K to 293 K, Second Five</td>
<td>2.90</td>
<td>2.20</td>
<td>3.35</td>
<td>0.41</td>
<td>1.15</td>
<td>+/- 19.8%</td>
</tr>
<tr>
<td>77 K to 293 K, All ten</td>
<td>2.65</td>
<td>2.05</td>
<td>3.35</td>
<td>0.43</td>
<td>1.30</td>
<td>+/- 24.5%</td>
</tr>
</tbody>
</table>
Statistical Results

All Data Sets are Statistically Significant!
Probabilities of Next Coupon

- Heat Flux Greater Than (traditional)
- Heat Flux Less Than (traditional)
- Heat Flux Greater Than (small sample)
- Heat Flux Less Than (small sample)
Equations (from Microsoft Excel)

• Top curve
 \[T.DIST\left(\frac{Q_{\text{avg}} - Q}{\text{St.Dev}/\sqrt{j}}, j, \text{TRUE} \right) \]

• Bottom curve
 \[T.DIST.RT\left(\frac{Q_{\text{avg}} - Q}{\text{St.Dev}/\sqrt{j}}, j \right) \]

\[j = \text{number of samples (5)} \]
Repeatability Summary

- **25 layer systems repeatability around +/- 8%**
 - Phase 1A showed repeatability of +/- 8.4%
 - Phase 1B showed repeatability of +/- 8.0%
 - Five coupons between 300 K and 20 K
 - Statistics line up with standard errors associated with small sample sizes, suggests that data is meaningful
 - Indicates that ir-repeatability mostly due to installation (layer density)

- **10 layer systems repeatability +/- 15 – 25%**
 - Similar layer density trend (though not nearly as distinct)
 - Installation technician played a role too

- **Indicates repeatability a function of number of layers**