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Outline:
" [ntroduction
= Design requirements for SBND and SBN-FD cryogenic systems

= Description of cryogenics and design solutions for SBND and
SBN-FD

" Present state and conclusion
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The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform
(NP) at CERN are parts of the international Neutrino Program leading to the
development of Long-Baseline Neutrino Facility/Deep Underground Neutrino
Experiment (LBNF/DUNE) science project. When operated, neutrinos created by the
Fermilab beamline will pass the DUNE Near detector at Fermilab and then travel 1300
km to intercept DUNE's TPC based far detector at the Sanford Lab. The detector will be
installed in caverns at about 1.5 km below the surface.
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SBN: Three LAr-TPC detectors positioned along BNB at Fermilab
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Highlights:

= Different design of cryostats => specific requirements for the SBN
building facilities and SBN cryogenic systems

= Collaboration CERN <—> INFN <—> Fermilab while using different
approaches for deliverables
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The main design requirement -> electron lifetimes in argon in excess of 3
milliseconds:
300 [ms - ppt Oxygen Equivalent]

7 [ms] = oot Oy gon Equivalent] >3 ms =>p< 100 ppt (10-10 parts)

Problem: Commercial argon ~ 1 ppm, plus outgassing and back-diffusion
Solution: Filtration of O, and H,0O while transfer of LAr from storage to
cryostat, plus continuous recirculation of LAr volume of cryostat with
cryostat volume change every 5-8 days

Additional main requirements:

= Argon losses to atmosphere should be minimized to reduce re-filling

= Temperature difference over the detection volume shall be limited to
have a uniform reaction over the sensitive volume

=  QOperating pressure should be tightly controlled
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Design requirements for SBN cryogenic systems

Requirements and Specification: SBND
Cryostat type and size

Verifiable contamination for LAr delivery
LAr purity in cryostat

Nitrogen contamination

Design Pressure

Operating gas pressure

Initial purification technique
Cooldown technique

TPCs cool-down rate restriction
LAr recirculation rate

Number of side/bottom penetrations
Included subsystems

Grounding and noise requirement or external
equipment
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Value

Membrane (GTT) with self-supported steel structure
5.202 m x 5.423 m x 7.027 m, ~270 tons (~2% ullage)
Gas purge for insulation space

0O, <1 ppm, H,0 <1 ppm, N, <2 ppm

> 3 ms electron lifetime (<100 ppt O, equivalent)

<2 ppm

Internal 345 mbarg (~5 psig), external 50 mbar

70 mbar (~1 psig) with +/- 5%

GAr Piston purge with rate of rise 1.2 m/hr

LAr spray with GAr and GAr momentum (< 10-15 K/hr)

< 40 K/hr, < 10 K/m (vertically)

2.5 -8.0 m¥hr (10 — 35 gpm)

1 (use of Protego®© internal valve or external safety valves)

LAr and LN2 storage and transport, O,-N,-H,O contamination
monitoring, LAr and GAr recirculation and filtration, GAr condensing
and recovery, safety and controls

Electrical isolation of noise from cryostat and its electronics
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Design requirements for SBN cryogenic systems

Requirements and Specification: SBN-FD

Cryostat type and size

Verifiable contamination for LAr delivery
LAr purity in cryostat

Nitrogen contamination

Design Pressure

Operating gas pressure

Initial purification technique
Cooldown technique

TPCs cool-down rate restriction
LAr recirculation rate

Number of side/bottom penetrations
Included subsystems

Grounding and noise requirement or external
equipment
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Value

Dual aluminum vessels with common LN, shields within a warm self-
standing steel structure with GTT-style insulation

3.600 m x 19.600 m x 3.900 m, ~380 tons each (~2% ullage)

Gas purge for insulation space

0O, <1ppm, H,0<1ppm, N, <2 ppm

> 3 ms electron lifetime (<100 ppt O, equivalent)

<2 ppm

Internal 345 mbarg (~5 psig), external up to 1 barg

150 mbar (~2 psig) with +/- 5%

Pump down to full vacuum

Initial with LN, shield, final with LAr fill at 2 K/hr

< 70 K/hr, < 50 K/m (vertically)

2.5 —8.0 m3/hr (10 — 35 gpm)

1 side and 1 bottom (per cryostat) (use of external safety valves)

LAr and LN2 storage and transport, O,-N,-H,O contamination
monitoring, LAr and GAr recirculation and filtration, GAr condensing
and recovery, safety and controls

Electrical isolation of noise from cryostat and its electronics
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As Fermilab and CERN engage in SBN partnership, an agreement
has been established for naming cryogenic sub-systems, some of
which are deliverables of Fermilab and some are deliverables of

CERN.

SBND SBN-FD

DeNyerables
Institions | Internal | Proximity | External | Cryogenic | Internal | Proximity | External | Cryogenic
Cryo Cryo Controls Cryo Cryo Cryo Controls
Cryo
CERN X X
Fermilab X X X X X
INFN X
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©)

To satisfy design requirements, the following modes of
operations are implemented:

Mode of Operation

Initial cleanup

Final cleanup

Cooldown

Fill

Purification

Normal operation

Regeneration of filters

Michael Geynisman

SBND (membrane cryostat)

Piston purge with gaseous argon to remove
the initially present air

Internal circulationvia a membrane pump
through a commercial room temperature
purification system

Spray with commercial grade argon through
spray nozzles with GAr and GAr momentum
(< 10-15 K/hr)

From LAr storage dewar with commercial
grade argon and re-condensing with LN,

Circulation by LAr pumps through specially
developed externally located purifiers
consisting of volumes filled with molecular
sieve, which will adsorb the eventual water
traces present in the argon flow, and active
copper pellets which will chemically react with
the diminish the oxygen equivalent
contamination from the low parts per million to
the parts per trillion level.

+ Maintaining level by adding condensed GAr

* Maintaining pressure by rate of condensing
GAr boiloff

+ Maintaining purity by recirculating and
filtering LAr

Regeneration filters in place with heated GAr
[ 2.5% H, mix

CEC/ICMC 2017
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SBN-FD (aluminum vessels)

Pump down to full vacuum for up to 90 days
None

Initial with LN2 shield, final with LAr fill at 2
K/hr

From LAr storage dewar with commercial
grade argon and re-condensing with LN,

Circulation by LAr pumps through specially
developed inline purifiers consisting of
removable cartridges filled with molecular
sieve, which will adsorb the eventual water
traces present in the argon flow, and active
copper pellets which will chemically react with
the diminish the oxygen equivalent
contamination from the low parts per million to
the parts per trillion level.

+ Maintaining level by adding condensed GAr

* Maintaining pressure by rate of condensing
GAr boiloff

+ Maintaining purity by recirculating and
filtering LAr

Regeneration removed cartridges with heated

GAr /2.5% H, mix
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Typical P&ID
Cryostat, Proximity
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el SR T T e S e Sy Typical P&ID
Proximity, External
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e e R =— Typical P&ID

Proximity, External
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Typical Design: Condenser-Filter

Courtesy of Demaco
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Typical Design: LAr pump, External filter

+DeMACO

Courtesy of Demaco Courtesy of Demaco
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Internal cryogenic system for SBND

= Connecting

interfaces Manhole
= Support of internal

plplng Top Plate & Insulation
= Design based on

modeling
= SBN Cooldown -

CFD Simulation Liquid Return & Distribution

Cooldown Piping \

P

Piston-Purge Piping

Frame Temperature @ 106 minutes
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Integration: SBND

Integration via: _______________“f_ :
* Physical interfaces

e Management of space

* Installation

e Validation for safe
operations
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Integration via:

* Physical interfaces

e Management of space

* |Installation

e Validation for safe
operations
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Conclusions:

= Fermilab has already added two new neutrino detector
buildings to the Neutrino Campus at Fermilab.

= Equipment for External cryogenics is beginning to populate
SBND and SBNFD (in-house designed and constructed)

= The Proximity cryogenics are being designed and constructed
in Europe.

= The commissioning of the cryogenic systems is scheduled for
2018 (SBN-FD) with SBND following.

= Many of the design solutions will be tested for SBN cryogenics
to validate design of the cryogenic system for the LBNF/DUNE
project.
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