Numerical and Experimental Study of an Annular Pulse Tube Used In The Pulse Tube Cooler

Xiaomin Pang, Yanyan Chen, Xiaotao Wang, Wei Dai, Ercang Luo

CONTENTS

- > Introduction
- Physical model and CFD simulation
- > Experimental setup and results
- > Conclusions

➤ Single stage Stirling type pulse tube cooler configuration

> Two-stage Stirling type pulse tube cooler configuration

Completely co-axial two-stage configuration is the most compact configuration

> Co-axial configuration for two stage G-M type pulse tube cooler

T. Koettig, S. Moldenhauer, R. Nawrodt. et.al. Two-stage pulse tube refrigerator in an entire coaxial configuration. Cryogenics, 2006, 46: 888-891

➤ Co-axial configuration for two stage Stirling type pulse tube cooler

I. Charles, E. Ercolani, C. Daniel. Preliminary thermal testing of a high frequency two stage coaxial tube for earth observation missions. [c]//Proceedings of ICEC24-ICMC 2012

Annular pulse tube is inevitable in the completely two stage co-axial configuration

Comparison of Circular pulse tube and Annular pulse tube is present in this paper based on a single stage inline type pulse tube cooler working in liquid nitrogen temperature.

CONTENTS

- > Introduction
- Physical model and CFD simulation
- > Experimental setup and results
- > Conclusions

PHYSICAL MODEL

➤ Configuration and details of the model.

PHYSICAL MODEL

- > Two dimensional axisymmetric model
- > Grids and Boundary condition

Inlet: $m_{in} = m_a \sin(\omega t + \theta)$

Mean Pressure: 3.5 MPa

Outlet: $p_{out} = p_m + p_a \sin(\omega t)$

Frequency: 100 Hz

➤ Influence of the pulse tube shape on the pulse tube impedance is small

	Circular pulse tube	Annular pulse tube
Impedance amplitude (Pa.s/m2)	1.612E+9	1.612E+9
Impedance angle (Deg)	41.5	41.4

The skin effect influencing area occupies a larger fraction of the total flow area in the annular pulse tube

Radial distributions of velocity at X=36 mm (middle of the pulse tube) at four moments

The skin effect influencing area occupies a larger fraction of the total flow area in the annular pulse tube

Radial distributions of temperature at X=36 mm (middle of the pulse tube) at four moments

- The enthalpy flow in the annular pulse tube is lower by about 1.6 W (11%) compared to that in the circular pulse tube.
- ➤ The expansion efficiency of the circular pulse tube is 88%
- ➤ The expansion efficiency of the annular pulse tube is 78%

The distribution of energy flow in the pulse tube

CONTENTS

- > Introduction
- Physical model and CFD simulation
- > Experimental setup and results
- > Conclusions

EXPERIMENTAL SETUP

> Schematic of the experimental setup

- 1. compressor 2. Main ambient heat exchanger 3. Regenerator 4. Cold end heat exchanger
 - 5. Pulse tube 6. Ambient heat exchanger 7. Inertance tube

EXPERIMENTAL RESULTS

The no-load temperature increases by about 5.5 K when the pulse tube changes from circular shape to annular shape.

Mean pressure: 3.5 MPa

Frequency: 100 Hz

No-load temperature vs. Input acoustic power

EXPERIMENTAL RESULTS

➤ Cooling power difference is about 0.9 W (11.4%).

Cooling power & efficiency at 77 K vs. input acoustic power

CONTENTS

- > Introduction
- Physical model and CFD simulation
- > Experimental setup and results
- Conclusions

CONCLUSIONS

- > Simulation results show that inhomogeneity of the velocity and temperature are stronger in the annular pulse tube.
- > Simulation results show that the expansion efficiency: Annular pulse tube 78% vs. Circular pulse tube 88%.
- Experimental results show that the cooling power at 77 K: Annular pulse tube 7.0 W vs. Circular pulse tube 7.9 W.
- > Set the basis for building a completely co-axial two-stage pulse tube cooler system

CONCLUSIONS

A Two stage completely co-axial pulse tube system has been set up.

THANKS

This work is financially supported by the National Natural Science Foundation of China under contract number of [51376187] and [51576205]

