Production of LNG with an Active Magnetic Regenerative Liquefier
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nally, we are investigating use of liquid propane as a liquid heat transfer fluid
for a LNG AMRL. The specific costs estimates are encouraging and should
scale well if frequency can be increased to 2 Hz or higher but this is very cou-
pled to density of heat transfer fluid. An AMRL for LNG should scale well as
the capacity increases.
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Figure 3: Table of Temperature ranges, CH4 process stream loads, total

temperature changes and field/temperature-dependent effects to heat capacity
heat reject loads, and work rates for each stage

for specific and narrow operating temperature ranges.



