CEC - ICMC 2017, July *Madison, WI*

First operational experience with the HIE-Isolde helium cryogenic system including several RF cryo-modules

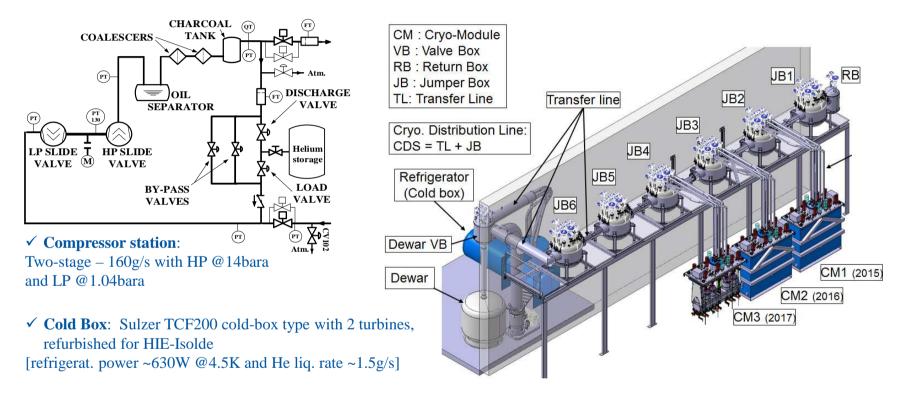
Main author: N. GUILLOTIN

Co-authors:

T. Dupont

Ph. Gayet

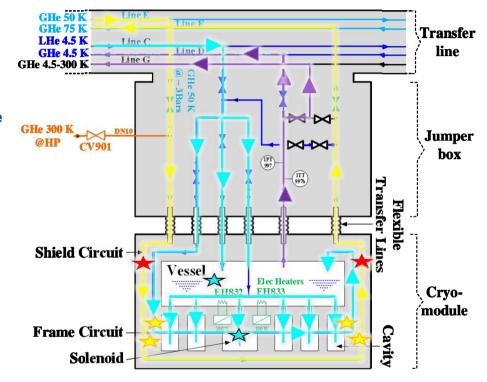
O. Pirotte


Outline

- □ Introduction
- □ First cryogenics operation in 2015 with 1 cryo-module
- □ Cryogenics operation in 2016 with 2 cryo-modules
- □ Upgrade during the Extended Year End Technical Stop 2016/2017
- □ Cool down and commissioning in 2017 with 3 cryo-modules
- □ Conclusion and next milestones

HIE-ISOLDE Cryogenic System

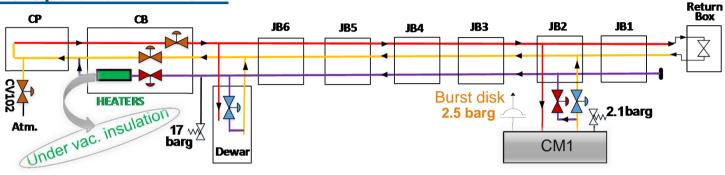
First cool down in 2015 with CM1


□ Cool-down in five phases:

- ✓ Shield cool-down to 80K with GHe
- √ Vessel and frame cool-down to ~100K with GHe
- ✓ Cav. and solenoid cool-down to ~ 100K with GHe
- √ Vessel and frame cool-down to 4.5K with LHe
- ✓ Cav. cool-down and filling with **LHe** at 4.5K

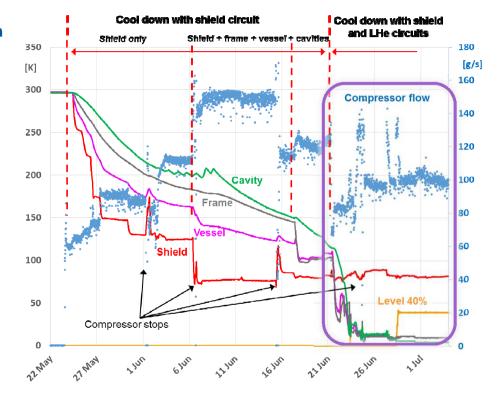
Thermal gradients	Localisation	ΔΤ
Shield: Outlet - Inlet	*	< 50K
Frame	★	< 40K
Frame – Vessel	☆	< 100K

☐ 13 days for the CM1 cool down - June 2015


- ✓ Cool down phases managed manually;
- ✓ Basic interlocks to respect the temperature gradients;

2015 Operation with CM1

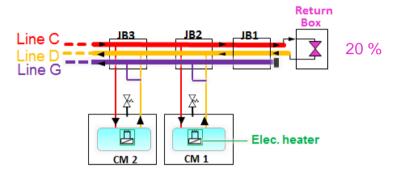
- ☐ Overheating of the ~10kW electrical heater in the cold box by-pass return line;
- Burst of the CM1 rupture disk (> 2.5 barg) ⇔ combination of hardware/software unappropriated settings;
 - Quick and efficient repair
- ☐ From Sept. to Nov. 2015 (physics run) : availability of the cryo plant = 100% ✓
- ☐ Measure of CM1 static heat load : 9.5W at 4.5K (expected design value);
- Warm-up of CM1 ⇒ sent to the clean room to upgrade the RF couplers



2016 Operation with 2 CM

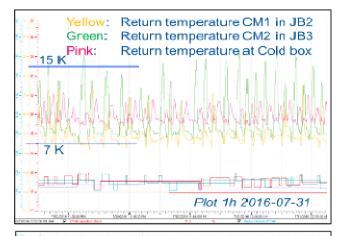
- □ Compressor conditioning and CM1 + CM2 cool down hardly started in May:
- ✓ CP Helium circuit with H2O and N2 pollution,
- ✓ CP flow limitation (140 g/s max)

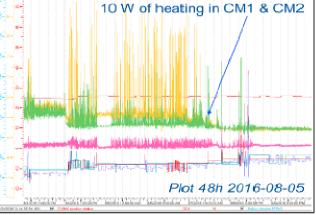
- □ 14 days to cool down the shields to ~75K, due to:
- ✓ Several unwanted stops of the compressor
- ✓ Unappropriated interlocks for CB and JB
- ✓ Process predominantly manual
- □ 2 additional weeks necessary to revise interlocks and process
- ☐ Then cool down with LHe:
- ✓ Not possible to fill in parallel the 2 CM with LHe



■ Machine commissioning with CM1 + CM2

Strong thermal and pressure oscillations in the 4.5K return line D ⇒ tripping of the cavities

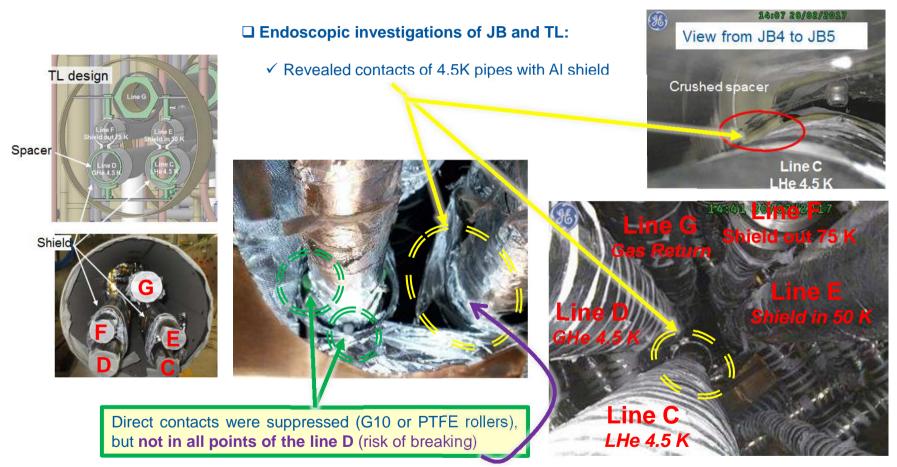

Nominal operation: 60 W 50 W

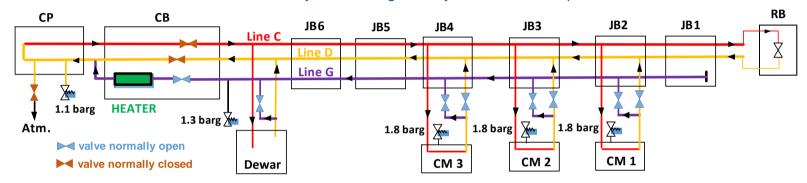

☐ Capacity test: 220 W 120 W

Oscillations reduced by activating the elec. heaters in each vessel + opening (+10%) of the by-pass valve in the return box

Indication of bad LHe quality supply + high heat load in CDS

□ 2016 availability of the cryo plant = 100%





<u>Upgrades during the Extended Year-End Technical Stop 2016/2017 (EYETS)</u>

□ Review during the EYETS of the safety concept concerning :

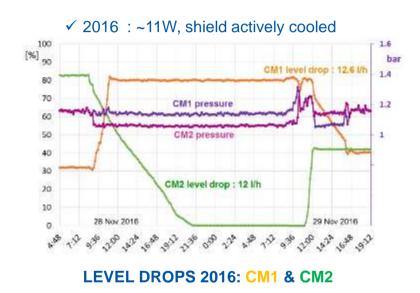
- ✓ Global process ⇒ ease gas exhaust before a significant CM pressure increase;
- ✓ NO / NC valve status on all return lines up to Compressor;
- ✓ Installation of 2 additional safety valves ⇒ gradually release of over-pressure

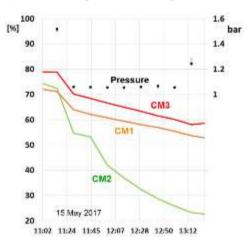
- ☐ Complete revamping of the process of Cold-Box and CDS (JB + TL)
 - ✓ To optimise the cool down & nominal operation;
 - ✓ To allow quasi-automated restarts and cope with short stops of the cryo-plant;
- ☐ Complete revamping of the CS interlocks to avoid unwanted stops

Cool down and commissioning in 2017 with 3 cryo-modules

- ☐ CM1 & 2 were cooled & filled in parallel;
- □ CM3 probably also filled, but issues with level transmitters ⇒ confirmed a few days later (after repair)

Phases	2016 2 CMs	2017 3 CMs
300K → 5K	≈ 15 effective days	≈ 9 effective days
LHe Filling (stable/reg.)	5 effective days	4h for CM1&2 + 4h for CM3


Proof of improvements executed during the EYETS



☐ Static heat load tests of CM (derived from level drops)

✓ 2017 : ~13W, shield stopped, but issue with CM2 (3 times higher, investigations on going)

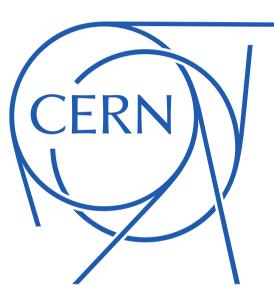
LEVEL DROPS 2017: CM1 & CM2 & CM3

☐ Capacity test: stable operation tested with 100 W in each CM

Conclusion

- ☐ Long series of issues due to lack of time to commission the cryo-plant and the CDS with the associated control logic;
- ☐ Endeavors performed to diagnose and overcome issues like CDS have been efficient;
- ☐ Static heat load of CM are within design specification
- ☐ In 2015 and 2016: 100% of cryo availability during physics run

Next milestones


- ☐ Restore full performance of the CDS ⇒ repair during next YETS 2017/2018
- □ Review of the control logic of the CDS ⇒ taking into account lessons learnt during the last cool down
- ☐ Improvements ⇒ pollution issue in the compressor station, overheating of the heater in the cold box
- ☐ Commissioning of the dewar

Thank you for your attention. Questions?

Nicolas Delruelle took the responsability of the HIE ISOLDE cryogenics system from 2010 to 2015;

A special thought is brought to him.