

Overview of Cooling Technologies for Cryogenic Transportation Machines

W. Stautner¹, T. Haugan²

¹GE Global Research, Imaging Technology, Niskayuna, NY, USA ² Air Force Research Laboratory, Wright-Patterson AFB, OH, USA

July 9-13, Monona Terrace, Madison, WI

System Cooling Modes – Direct / Remote

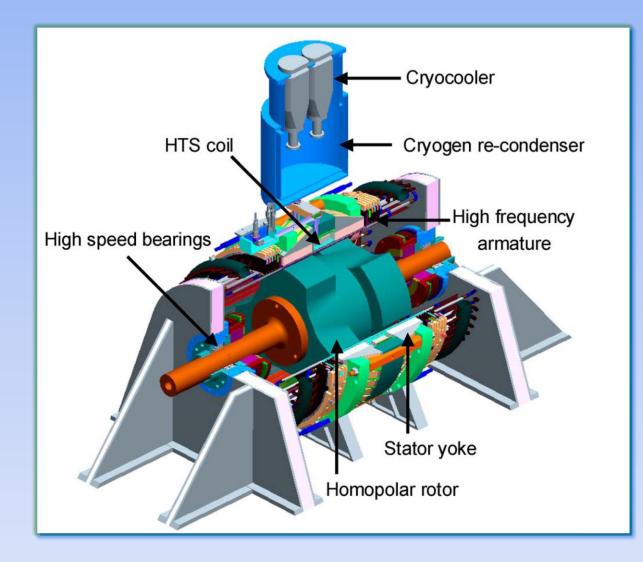
- Bath cooling / immersion cooling / subcooled / solid cryogens
- Thermosiphon cooling / heat pipes / pulsating heat pipes
- Forced-flow cooling / pumped / circulated with impellers
- Conduction cooled / directly bolted on or via cold plates

Cryogens* to Cool HTS Applications

Cryogen		BP (K) immersed	TP (K) – siphons, HP
Krypton	Kr	119.8	115.8
Methane	CH4	111.7	88.7
Oxygen	O ₂	90.2	54.4
Argon	Ar	87.3	83.8
Fluorine	F	85.2	53.5
Carbon monoxide	CO	81.6	68.1
Air	N ₂ +O ₂	78.8	59.8
Nitrogen	N ₂	77.3	63.15
Neon	Ne	27.1	24.55
Hydrogen (normal)	H ₂	20.4	13.95
Hydrogen (para)	H ₂	20.28	13.8
Helium-4	Не	4.215	5.22 (CP)
Helium-3	He	3.19	3.33 (CP)

T_c

BSCCO family, 1G HTS: **85-110 K**


REBCO-123, YBCO-123, Y-123, 2G HTS: **92 K**

MgB₂: **39 K**

*Mixtures excluded Need cryocoolers to bridge the T-gaps

Technology Deployment – SC machines – Airborne Applications

Stationary HTS excitation coil, LNe cooled, BSCCO 2223, Peak field 1 T, 5 MW, 10,000 rpm

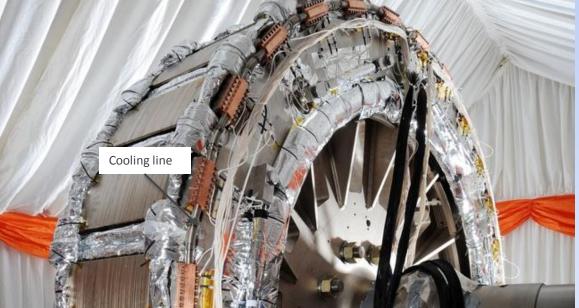
Airborne Applications Homopolar Machine

GE 2009

Further examples

5000 hp motor

Siemens


J. Yuan, P. Winn, Cooling system for HTS Motors, International workshop on cooling systems for HTS, (IWC-HTS), Matsue, Japan, 2015 W. Nick, Siemens CT, Superconducting Motors and Generators, SCENET, Finland, 2005 See also: W. Stautner, "Cryocoolers for Superconducting Generators", Chapter 5, in M. Atrey (ed.), Cryocoolers – Theory and Applications, Springer Publishing, 2017

Further examples

Supplier	Туре
Power rating (nominal) (MW)	1.2 / 1.7
Zenergy conductor	Bi-2223
Rotational speed (rpm)	214
Number of poles	28
Line voltage (kV)	5.25
Design parameters	
Diameter (m)	3
Axial length (m)	1
Operating temperature (K)	30
Base temp. (with 1 cooler)	45
Coolers (2)	Cryomech
Impeller driven cooling	Cryozone

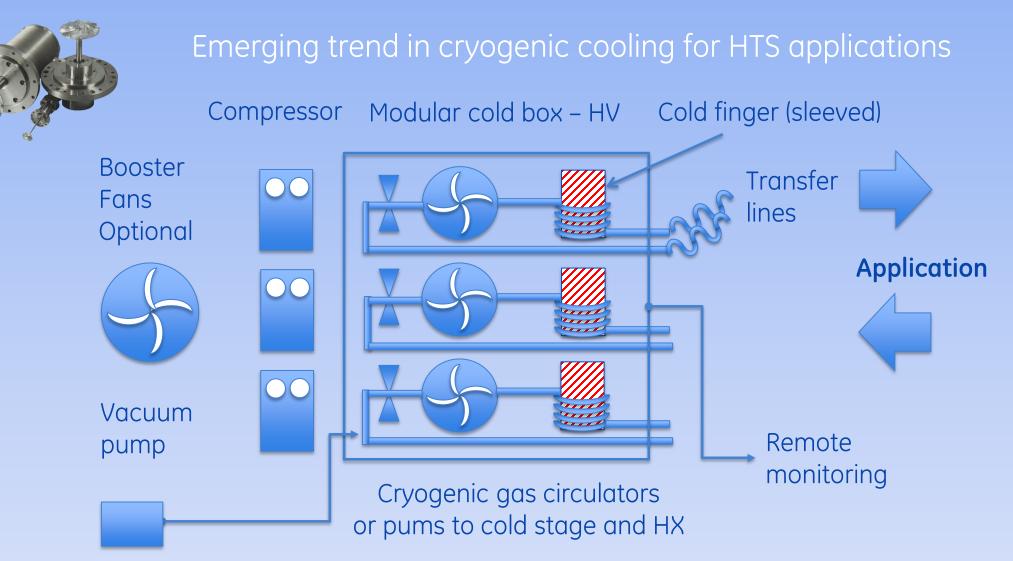
Typical component layout for coldbox remote cooling, GE Energy

Cryocooler Development Status for Transportation Machines

Supplier	Туре	Single stage T-range	T _{bottom}	MTBF (hours)
Cryomech	GM type	600 W @ 80 K	26 K	15,000
Cryomech	PTR	100 W @ 80 K	9 K	25,000
Sumitomo	GM	200 to 600 W @ 80 K	20 K	15,000
Leybold/Oerl.	GM	140 W @ 80 K	18 K	n.a.
Chart/Qdrive	Stirling	Up to 1 kW @ 80 K	40 K limit	129,760
Creare+	Stirling	> 1 kW @ 80 K	(tbd.)	180,000
STI*	Stirling	Up to 100 W @ 80 K	45 K	>1 000,000
Sunpower	Stirling PTR	Up to 16 W @ 80 K	40 K limit	>1 000,000
Stirling SV	Stirling	Up to 1.3 kW @ 80 K	38 K	n.a.
Linde/Praxair	Rev Brayton	0.9 kW @ 20 K ^{\$}	n.a.	n.a.
Taiyo Nippon Sanso	Turbo Brayton (Neon)	2 kW @ 70 K ^{\$} 10 kW @ 70 K	60 K	n.a.
Air Liquide	Turbo Brayton	50 kW and higher	35 K	n.a.


*design study, +under development, \$with LN₂ subcool

Cryogenic Topology of HTS Applications – Summary Status 2017


System	Conductor	T-range	Technologies
MRI	MgB ₂ /DI-BSCCO	4 to 10 K / 20 to 40 K, SN ₂ < 30 K	Conduction cooled, thermo-siphons / heat pipes
Generators	YBCO/MgB ₂ /BSCCO / DI-BSCCO	10 to 40 K, GHe, LNe solid/liquid gas mixes	Forced flow, LNe siphons, conduction-cooled (cooler mounted on rotor)
Motors	YBCO/BSCCO/GdBCO/MgB ₂	20 to 40 K	CC via cold plate
AC cables	YBCO	LN ₂ @ 67 to 72 K	Pumped flow
DC cables	BSCCO/MgB ₂	MgB ₂ : 2-walled @ 20 K, 4-walled 20 K / 70 K	Pressurized LN ₂ , He gas, LH ₂ , L _{air} (proposed), circulating siphons
SMES	YBCO/BSCCO/MgB ₂	$LN_2/LHe/LH_2/LNe$	Immersion, 15 K CC-cooled, forced flow (1.5 - 10 K), siphon
SMB and flywheels	YBCO/BSCCO	10 to 20 K / 63 to 77 K or lower	Conduction cooled
Transformers	YBCO/BSCCO	66 to 77 K	Circulated LN ₂ /siphons
FCLs	BSSCO-2212 rods, YBCO/MgB ₂	< 20 to 67 K	Immersed, CC, SN ₂
Electr. comp.	YBCO film	30 to 70 K range	Conduction cooled
Cyclotrons	BSCCO-2212/YBCO	30 to 70 K range	Conduction cooled

Cryogenic Operating Conditions for HTS Transportation Machines

Distributed
Modular
Serviceable
Simple maintenance

Fans: Cryozone, Barber Nichols, Creare, Mayekawa, Air Liquide, Linde/Praxair, R&D Dynamics

Evaluation of current HTS components

Solution	Status	КРІ	Result
High power GM cooler	Cooling power avail. good, low eff.	Piston too heavy, low efficiency, oil	Maintenance issues
High power PTR cooler	Not available	Higher efficiency	Good, can be deeply embedded
High power Stirling	Available	Needs lower base T	Oil free, excellent
Turbo-Brayton	Available	Costly/maintenance	MTBF data?
Crycooler characterization	Inadequate	Adverse OP conditions	Transportation /vibration
Turbines and impellers	Available	Costly / HX needs improvement	MTBF – still need more data
Compressors for GM/PTR	Oil free, limited availability	Very little develop- ment effort only	MTBF not known yet
Liquid pumps	In development	Efficiency / no moving parts	MTBF not known yet

Key Enablers for Market Readiness - Industrialization

Cryocoolers

- Low maintenance or preferably maintenance-free at low cost
- Low susceptibility to vibration etc for some applications
- Able to withstand high 'g' forces
- Higher efficiencies at lower cost

Instrumentation and components

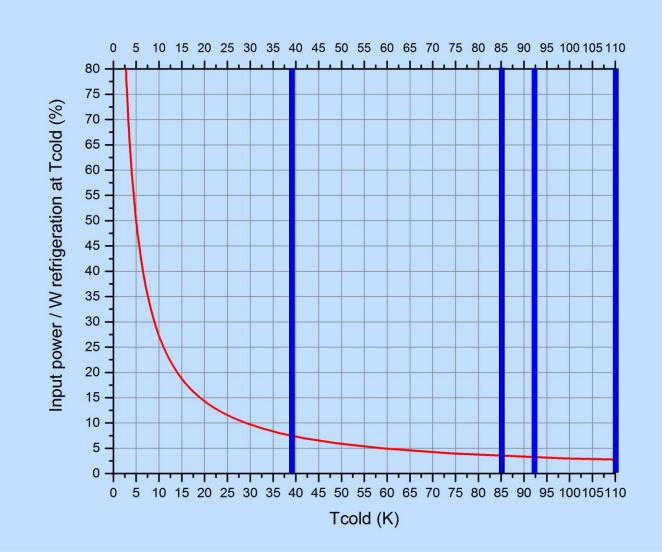
• e.g. high vacuum gauges in magnetic field, valves, etc. capable of withstanding high 'g' forces, acceleration and / or inclined operation

High-vacuum pumps

• Low maintenance / maintenance-free over years

Supplier chain and test facilities

• Need more highly specialized test facilities for components



Thank you!

© 2017 General Electric Company - All rights reserved

