OVERVIEW OF IN-MEDIUM MASS MODIFICATION RESULTS FROM RHIC, LHC AND LOWER ENERGIES

> Mihael Makek University of Zagreb Faculty of Science

Outline

Introduction

- QCD phase diagram
- The role of dileptons
- Experimental framework
- The reference systems
- □ The overview of the experimental results
 - STAR
 - PHENIX
 - ALICE
 - HADES
- Comparison with the models
- Summary and outlook

Different states of matter

Phase-diagram of water

The role of dileptons

- Dileptons pairs: dielectons (e⁺e⁻) and dimuons (μ⁺μ⁻)
 - Emitted throughout the space-time evolution of the collision
 - Electomagentic probes, not sensitive strong interactions
 - Probe the medium at the time of their creation
- Modifications to the dilepton spectrum due to the QCD phase transition:
 - Change in the spectral shape of light vector mesons linked to chiral symmetry restoration
 - Continuum enhancement related to QGP thermal radiation
 - Medium effects on hard probes Heavy flavor energy loss

Known sources of dielectrons at RHIC:

- Dalitz decays of $\pi^0,\,\eta,\,\eta^{\,\prime},\,\omega$
- Direct decays of ρ, ω, ϕ
- Charm (beauty) production
- Drell-Yan

Experimental framework

- Collider experiments (with the ability to measure dielectrons in heavy ion collisions):
 - **PHENIX** and **STAR** at **RHIC**: study of various collisions systems (Au+Au, Cu+Cu, U+U) at $\sqrt{s_{NN}}$ ranging from 19.6 to 200 GeV
 - **ALICE** at LHC (Pb+Pb collisions at $\sqrt{s_{NN}}$ 2.76 and 5.02 TeV)
 - Major issues: low S/B typically (1/1000-1/200) and alarge hadron contamination
- Other experiments:
 - CERES, NA60, HADES (lower energy)
 - FAIR, NICA, J-Parc (future)
- To determine QGP properties need <u>reference systems</u>:
 - p+p collisions (base-line for vacuum properties)
 - d+Au, p+Pb (base-line for cold-nuclear matter effects)
 - Hadronic cocktail (simulated contributions of all known sources at a given energy and collision system)

The reference systems: p+p collisions

- STAR data from p+p collisions at √s=200 GeV (example)
- Data consistent with the cocktail

 no excess
 suppression at any
 invariant mass
- Proof of principle for understanding of both the cocktail and the data

The reference systems: d+Au collisions

excess or suppression at any invariant mass \rightarrow no considerable cold nuclear matter effect in dielectron channel

The hadronic cocktail (PHENIX)

- Hadron decays simulated in EXODUS
- □ Fit π^0 and π^{\pm} data p+p or Au+Au to modified Haggedorn function:

$$E\frac{d^{3}}{dp^{3}} = \frac{A}{(e^{-(ap_{T}+bp_{T}^{2})}+p_{T}/p_{0})^{n}}$$

□ for other mesons η, ω, ρ, φ, J/Ψ etc. use pion parametrization and replace:

$$p_T \rightarrow \sqrt{p_T^2 + m^2 - m_{\pi^0}^2}$$

- The absolute normalization of each meson provided by meson to π⁰ ratio at high p_T
- Open heavy flavor (c,b) simulated with MC@NLO and PYTHIA
- The cocktail filtered through detector acceptance and smeared with detector resolution
- Normalization
 - In $m_{ee} < 0.1 \text{ GeV/c}^2$ and $p_T/m_{ee} > 5$
 - Normalize to measured $\pi^0 + \eta + \text{direct } \gamma$

Experimental results

Dielectron results from STAR

Dielectron results from PHENIX

Minimum bias

Centrality dependence

Dielectron measurements from ALICE

Preliminary results in p+p and p+Pb

In Pb+Pb very low S/B and high hadron contamination prevent precise

Mihael Makek

Day of Femtoscopy 2016, Gyöngyös

Recent results at lower energies

- Results from HADES@GSI
 - Ar+KCI @ 1.76 AGeV, PRC 84 014902 (2011)

Dielectron excess in Ar+KCl x2-3 larger than in C+C collisions

Theoretical models

Models on the market

- Macroscopic effective many-body theory models. E.g. model originally developed by Rapp and Wambach, which uses an effective Lagrangian and many-body approach to calculate the EM spectral function.
- Microscopic transport dynamic models. E.g. Parton-Hadron String
 Dynamic (PHSD) or Ultra-relativistic Quantum Molecular Dynamics (UrQMD)
- Coarse-graining models. Dynamics based on microscopic description (e.g. UrQMD), with phase-space cells averaged over many events allow describing the dynamics in (macroscopic) terms of temperature and barion-chemical potential.

What happens with the ρ meson in medium?

Results from NA60@SPS – high precision dimuons

In+In collisions 158 AGeV favor broadening and rule out dropping rhomass scenario

Excess dimuons well explained by thermal radiation from the hadron gas ($\pi^+\pi^- \rightarrow \rho \rightarrow \mu^+\mu^-$) in the LMR and thermal radiation from the QGP in the IMR

Dielectron excess well described by the model of **R. Rapp:** (Rapp and Wambach, EPJ C 6, 415 (1999); Rapp, PRC 63, 054907 (2001))

- In-medium ρ broadening due to scatter off baryons in hadrons gas as the system approaches the critical temperature
- A small contribution from the QGP thermal dielectron emission.

Comparison to models (PHENIX and STAR vs. Coarse-graining)

- Dielectron excess in the LMR well described by the coarse-graining model (Endres, van Hees, Bleicher PRC94 024912 (2016))
 - The curves include the hadronic contributions (the cocktail) from the UrQMD and the thermal dielectron emission
- The data described well in invariant mass and transverse momentum
 Mihael Makek
 Day of Femtoscopy 2016, Gyöngyös

Comparison to models (STAR vs. Rapp and PHSD) Au+Au at $\sqrt{s_{NN}}=200 \text{ GeV}$

 Dielectron excess described within the experimental errors by the models *Rapp* (Rapp, PoS CPOD2013, 008 (2013)) and *PHSD* (Linnyk et al., PRC 85, 024910 (2012)):

- The excess is due to in-medium ρ broadening
- A small contribution from the QGP thermal dielectron emission.
- Centrality dependence is well described

Comparison to models (STAR vs. Rapp) Au+Au at √s_{NN}=20-200 GeV

U+U at √s_{NN}=193 GeV

Comparison to models (STAR vs. Rapp and PHSD) Au+Au at $\sqrt{s_{NN}}$ =200 GeV

STAR, PRC 92, 24912 (2015)

- Centrality and transverse momentum dependence well described
- Precision measurements needed to discriminate between the models

Mihael Makek

Day of Femtoscopy 2016, Gyöngyös

3.5

3

Momentum dependence

Comparison to models (HADES vs. coarse-graining model

- Dielectrons from Ar+KCI @ 1.76 AGeV recorded by HADES PRC 84 014902 (2011)
- The coarse-graining model provides satisfactory description PRC 92 014911 (2015)
- The dominant contribution from broadened ρ meson in the presence of baryonic matter
- Non-negligible broadening of omega meson
- Slight overestimation of data at ρ pole-mass

Testing model on different data

→The same model describes the NA60 data and STAR data at different energies

Van Hees and Rapp, Nucl. Phys. A 806, 339 (2008); Rapp, Adv. High Energy Phys. 2013 148253 (2013)

Mihael Makek

The model enables extraction of the fireball lifetime:

- \rightarrow longer in central collisions
- ightarrow longer at higher energies

Emerging picture of the chiral symmetry restoration?

Suggested approach to chiral symmetry restoration: a_1 and ρ become degenarate as the system approaches critical temperature

Is there room for other approaches?

- Shown models are robust in explaining the enhancement, however...
- The uncertainties of experiments and models are quite large, do they leave room for other/additional inputs?
- A suggestion to explain (a part of) low mass dilepton excess (arXiv:1211.1166):
 - $\hfill\square$ Drop of η' mass in nuclear medium?
 - **\square** Radial flow boosts low p_T part of the spectrum?
 - η' chain decays to other mesons?
 - The best confirmation would require direct η' observation challenging!

Summary and outlook

- PHENIX and STAR measure consistent dielectron excess yields 200 Au+Au; STAR also measures dielectron excess at lower energies and U+U collisions
- Dielectron in-medium excess observed at lower energies with NA60, CERES and HADES
- Various theoretical models reproduce the measurements across a wide energy range, they dominantly include broadening of the ρ spectral function as the system approaches the restoration of the chiral symmetry
- Outlook:
 - Precise determination of the charm contribution
 - Higher precision to discriminate between the models
 - Lower energies to test the models at lower temperatures and higher baryon densities
 - STAR upgrade and BES II (2018)
 - ALICE upgrade (2020)
 - MPD@NICA (2019?) and FAIR (2022?)
 - JPARC Heavy ion program?
 - JPARC precise measurement of the LVM spectral function in the nuclear matter

Temperature vs. net baryon density

JPARC-E16 experiment

- The goal: precise measurement of the LVM spectral function in nuclear matter
- □ KEK-PS result (R. Muto et al., PRL 98(2007) 042501)

The proposed E16 experiment to:

- boost the statistics x100
- to double the resolution
- \rightarrow Allow mass separation

In-medium ϕ from PHENIX

 $\Box \phi$ ->ee from d+Au collision at 200 GeV

Day of Femtoscopy 2016, Gyöngyös

In-medium ϕ from STAR

 $\Box \phi$ ->ee in Au+Au collisions at 200 GeV

Hints of spectral shape modification?

Comparison to model (PHENIX): centrality dependence

Centrality dependence of the Rapp model consistent with the data

More about Rapp's model

- In the LMR the spectral function is dominated by vector mesons, ρ in particular. The latest model includes non-perturbative QCD EoS and QGP emission (qq annihilation at T>T_c) based on lattice QCD
- Dilepton rates calculated by integration of the thermal rates over the space-time evolution of the fireball
- Successfully describes data from SPS to RHIC energies: the broadening (melting) originates mainly from the hadronic phase $(\pi^+\pi^- \rightarrow \rho \rightarrow e^+e^-)$, when the phase boundary is approached, while the contribution from the QGP (qq annihilation) is small.
- The model is able to extract the total fireball life-time from the LMR excess yields and the early temperature from the IMR slopes.
- The model is compatible with (the approach) to chiral symmetry restoration, for which a suggested mechanism is broadening of both ρ and a_1 , with the accompanied drop of a_1 spectral function towards the ρ mass as the system approaches the critical temperature.

Why heavy ion collisions?

Simulating charm contributions in PHENIX

Uncertainty in the cross-section and shape depending on MC@NLO or PYTHIA:

- The cross-sections extracted from fit to dielectrons in d+Au in the intermediate mass region both models decribe the data well (PRC 91, 014907 (2015))
- The two models differ in extrapolation to lower invariant masses caused by their different charm p_t and opening angle distributions
- The difference is more significant in Au+Au collisions where cc and bb contributions scale with N_{coll} while the other contributions scale with N_{part}

Mihael Makek

