Profiling Z' bosons using asymmetry observables in top pair production with the lepton-plus-jets final state at the LHC

Lucio Cerrito, Declan Millar, Stefano Moretti, Francesco Spanò

Southampton Queen Mary

NExT Workshop Queen Mary University of London 9th November 2016

Z' bosons in $t\bar{t}$

- Z' bosons are generically any new, heavy, neutral spin-1 bosons.
- Embedded due to residual U(1)' symmetries after Grand Unified Theory (GUT) breaking:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$$
.

- Multiple Z' may also arise in extra-dimensional/composite Higgs theories.
- Leads to additional term in low-energy neutral current Lagrangian:

$$\mathcal{L} \supset g' Z'_{\mu} \bar{f} \gamma^{\mu} (c_V^f - c_A^f \gamma_5) f = g' Z'_{\mu} \bar{f} \gamma^{\mu} Q_{Z'} f.$$

• May appear in $Z' \to \ell^+\ell^-$, $Z' \to q\bar{q}$, $Z' \to t\bar{t}$.

GUT motivated benchmark Z' models

 Generalised Sequential Models (GSMs):

$$Q_{GSM} = \cos \alpha T_L^3 + \sin \alpha Q,$$

 General Left-Right symmetric models (GLRs):

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

$$\rightarrow SU(2)_L \times U(1)_Y$$

$$Q_{GLR} = \cos \phi T_R^3 + \sin \phi T_{B-L},$$

• *E*₆ inspired models:

$$egin{aligned} \mathrm{E}_6 &
ightarrow \mathrm{SO}(10) imes \mathrm{U}(1) \psi \ &\mathrm{SO}(10)
ightarrow \mathrm{SU}(5) imes \mathrm{U}(1)_\chi \ &Q_{E_6} = \cos heta T_\chi + \sin heta T_\psi. \end{aligned}$$

Experimental bounds on benchmark model Z' masses

 Lower mass bound in GeV extracted by Accomando et al. based on CMS Drell-Yan results. [arXiv:1503.02672]

Class	E ₆				GLR			GSM					
U(1)'	χ	ψ	η	S	1	N	R	BL	LR	Y	SM	T_L^3	Q
$M_{Z'}$	2700	2560	2620	2640	2600	2570	3040	2950	2765	3260	2900	3135	3720

Top quark pair production

- $Z' \to t\bar{t}$ can provide additional information to $Z' \to \ell^+\ell^-$.
- Top mass of 173 GeV is close to EW symmetry breaking scale.
- Z'-t couplings significant in many BSMs, e.g. composite Higgs.
- Extremely short lifetime: top quarks decay prior to hadronisation.
- Top spin information is transmitted to decay products.
- Allows definition of unique Asymmetry observables.

Generation tools

- We generate the parton level 6 fermion final state and include full tree-level Standard Model $t\bar{t}$ interference, with all intermediate particles allowed off-shell.
- Helicity amplitude calculations based on HELAS subroutines.
- $m_t=173$ GeV, $m_b=4.18$ GeV, all other fermions massless.
- Can optionally enforce the narrow width approximation.
- PDFs used are by CTEQ6L1 at a scale of $Q = \mu = 2m_t$.
- VEGAS for multi-dimensional numerical phase-space integration.

Forward-Backward Asymmetry

Forward-backward Asymmetry is defined

$$A_{FB} = \frac{N_t(\cos\theta > 0) - N_t(\cos\theta < 0)}{N_t(\cos\theta > 0) + N_t(\cos\theta < 0)}$$

• This asymmetry demonstrates a different couplings to Z's when compared to the cross section (σ) :

$$\sigma \propto \left((c_V{}^i)^2 + (c_A{}^i)^2 \right) \left((c_A{}^t)^2 + (c_V{}^t)^2 (4 - \beta^2) \right),$$

$$A_{FB} \propto c_V{}^i c_A{}^i c_V{}^t c_A{}^t.$$

where
$$\beta = \sqrt{1 - 4m_t^2/\hat{s}}$$

- A_{FB} is sensitive to the sign of the couplings.
- pp collisions have no prefered z direction.
- However, typically parton momentum fraction: $x(q) > x(\bar{q})$.
- Use the boost direction to define the z axis.

$$\cos \theta \to \cos \theta^* = \frac{y_{tt}}{|y_{tt}|} \cos \theta \quad \Rightarrow \quad A_{FB} \to A_{FB}^*.$$

Top polarisation Asymmetry

Top polarisation Asymmetry is defined

$$A_{L} = \frac{N(+,+) + N(+,-) - N(-,+) - N(-,-)}{N(+,+) + N(+,-) + N(-,+) + N(-,-)}$$

• This asymmetry demonstrates a different couplings to Z's when compared to the cross section (σ) :

$$\sigma \propto \left((c_V{}^i)^2 + (c_A{}^i)^2 \right) \left((c_A{}^t)^2 + (c_V{}^t)^2 (4 - \beta^2) \right),$$

$$A_L \propto \left((c_V{}^i)^2 + (c_A{}^i)^2 \right) c_V{}^t c_A{}^t \beta.$$

Information about the top quark polarization is preserved in:

$$\frac{1}{\Gamma_f} \frac{d\Gamma_f}{d\cos\theta_f} = \frac{1}{2} (1 + \kappa_f \mathbf{A_L} \cos\theta_f)$$

- θ_f is the angle between the top quark momentum in the partonic rest frame and the decay fermion in the top rest frame.
- Create a 2D distribution in m_{tt} and $\cos \theta_\ell$
- Fit a straight line to the $\cos \theta_{\ell}$ distribution for each mass slice.
- Extract A_L as the fitted gradient.

Toy top pair reconstruction for lepton-plus jets

- Presently limited to the parton-level.
- Wish to mimic experimental conditions.
- Must resolve combinatorial ambiguity in jet-top assignment.
- Must also reconstruct the longitudinal neutrino momentum in the presence of missing transverse energy.
- Assume $p_T^{\nu} = p_T^{miss}$ and on-shell W:

$$p_T^{e^2} p_Z^{\nu^2} - 2k p_z^e p_z^{\nu} + p_T^{\nu^2} |p^e|^2 - k^2 = 0,$$

• Select solution that minimises:

$$\chi^2 = \left(\frac{m_{bl\nu} - m_t}{\Gamma_t}\right)^2 + \left(\frac{m_{bqq} - m_t}{\Gamma_t}\right)^2$$

Uncertainty and significance

Propagate error:

$$\delta A_{FB}^* = \sqrt{\frac{1 - A_{FB}^{*2}}{N}}$$

(shown as colored bands).

Construct likelihood:

$$L(\mu, \theta) = \sum_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j} e^{-(\mu s_j + b_j)}.$$

Find profile likelihood ratio:

$$\lambda(\mu) = \frac{L(\mu, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})}.$$

- Set $\mu=0$ hypothesis set $\mu=0$, i.e. assume that there is no new physics contribution, derive distribution with toys/asymptotic
- Code is available in RootStats [arXiv:1007.1727v3].
- General method applicable to any *n*-dimensional histogram.

Events expected m_{tt} distributions with $L = 100 \text{ fb}^{-1}$

- m_{tt} offers good distinguishing power between SM and BSM.
- Not easy to profile a discovered Z' as similar BSM response.

Expected A_{FB}^* binned in m_{tt} with $L=100~{\rm fb}^{-1}$

- ullet A_{FB}^* distinguishes different BSM models more strongly.
- Negligible for E_6 ; universally feature $c_V^u = 0$.
- Can be used to distinguish BSM models for a discovered Z'.

Expected A_L with $L = 100 \text{ fb}^{-1}$

- A_L clearly distinguishes between GSM and GLR model Z'.
- Negligible for E_6 ; universally feature $c_V^u = 0$.
- Can be used to profile a discovered Z'.

Results - 1D and 2D significances

Class	U(1)'	Significance (Z)					
		m_{tt}	$m_{tt} \& \cos \theta^*$	$m_{tt} \& \cos \theta_I$			
	$U(1)_\chi$	3.7	-	-			
	$U(1)_\psi$	5.0	-	-			
E ₆	$U(1)_\eta$	6.1	-	-			
	$U(1)_S$	3.4	-	-			
	$U(1)_I$	3.4	-	-			
	$U(1)_{N}$	3.5	-	-			
	$U(1)_R$	7.7	8.5	8.6			
GLR	$U(1)_{B-L}$	3.6	-	-			
GLK	$U(1)_{LR}$	5.1	5.6	5.8			
	$U(1)_Y$	6.3	6.8	7.0			
GSM	$U(1)_{\mathcal{T}^3_I}$	12.1	13.0	14.0			
	$U(1)_{\mathit{SM}}$	7.1	7.3	7.6			
	$U(1)_Q$	24.8	-	-			

Summary

- Written tool to generate top pair production 6 fermion final state with all intermediates bosons allowed off-shell.
- We have simulated event reconstruction for the semi-leptonic channel, at parton-level.
- Reconstructed A_{FB}^* and A_L retain sensitivity to new gauge bosons.
- These asymmetries can be used to profile Z' in top quark pair production.
- Additionally the asymmetry can be used as a complementary discovery observable to a standard bump hunt.
- In reality this process would fall in the boosted regime:
 - Leptons embedded in jets.
 - We can not resolve individual jets.

Future work

- Investigate other angularly dependent variables that may be constructed for di-leptonic $t\bar{t}$ events (in progress).
- Interface with parton-shower, hadronisation, detector reconstruction tools, e.g. Pythia+Delphes (in progress).
- Assess the performance of a boosted reconstruction of these variables.
- Investigate models featuring multiple interfering, non-universal, top-philic Z's, e.g. Composite Higgs.
- Include full irreducible background.

Thanks for your attention!

Backup slides

Matrix element Calculation and interference

$$|\mathcal{M}(pp \to t\bar{t})|^2 = |\mathcal{M}(QCD)|^2 + |\mathcal{M}(\gamma, Z, Z')|^2,$$

$$|\mathcal{M}(\gamma, Z, Z')|^2 = \frac{\hat{s}^2}{6} \frac{D_{ij}}{1 + \delta_{ij}} \left\{ C_{ij}^q \left[C_{ij}^t (1 + \beta^2 \cos^2 \theta) + B_{ij}^t (1 - \beta^2) \right] + 2A_{ij}^q A_{ij}^t \beta \cos^2 \theta \right\} + B_{ij}^t (1 - \beta^2) \right\} + 2A_{ij}^q A_{ij}^t \beta \cos^2 \theta$$

$$A^f = g_I^i g_I^j - g_P^i g_P^j, \qquad B^f = g_I^i g_P^j + g_P^i g_P^j, \qquad C^f = g_I^i g_I^j + g_P^i g_P^j,$$

$$D^{ij} = rac{(\hat{ ext{s}} - m_i^2)(\hat{ ext{s}} - m_j^2) + m_i m_j \Gamma_i \Gamma_j}{\left((\hat{ ext{s}} - m_i^2)^2 + m_i^2 \Gamma_i^2
ight) \left((\hat{ ext{s}} - m_i^2)^2 + m_i^2 \Gamma_i^2
ight)}.$$

Width determined by

$$\Gamma(Z' \to f\bar{f}) = N_c \frac{g_{Z'}^2 m_{Z'}}{48\pi} \beta \left[\frac{3 - \beta^2}{2} c_V^2 + \beta^2 c_A^2 \right],$$

where

$$eta=\sqrt{1-4rac{m_f^2}{m_{Z'}^2}}.$$

Experimental bounds from ATLAS - lepton-plus-jets

Benchmark model Z' parameters and couplings

U(1)'	Angle	g_V^u	g_A^u	g_V^d	g_A^d
$E_6 \ (g' = 0.462)$	θ				
$U(1)_{\chi}$	0	0	-0.316	-0.632	0.316
$U(1)_\psi$	0.5π	0	0.408	0	0.408
$U(1)_\eta$	-0.29π	0	-0.516	-0.387	0.129
$U(1)_S$	0.129π	0	-0.129	-0.581	0.452
U(1),	0.21π	0	0	0.5	-0.5
$U(1)_N$	0.42π	0	-0.316	-0.158	0.474
GLR $(g' = 0.595)$	ϕ				
$U(1)_R$	0	0.5	-0.5	-0.5	0.5
$U(1)_{B-L}$	0.5π	0.333	0	-0.333	0
$U(1)_{LR}$	-0.128π	0.329	-0.46	-0.591	0.46
$U(1)_Y$	0.25π	0.589	-0.353	-0.118	0.354
GSM $(g' = 0.760)$	α				
$U(1)_{SM}$	-0.072π	0.193	0.5	-0.347	-0.5
$U(1)_{T_{3L}}$	0	0.5	0.5	-0.5	-0.5
$U(1)_Q$	0.5π	1.333	0	-0.666	0

Asymmetries with polarized stable tops

• Spatial/spin asymmetries categorize events:

$$A = \frac{N_A - N_B}{N_A + N_B}$$

• At the polarised top level we can define a number of variables, e.g.

$$\begin{split} A_{FB} &= \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)} \\ A_{LL} &= \frac{N(+,+) + N(-,-) - N(+,-) - N(-,+)}{N(+,+) + N(-,-) + N(+,-) + N(-,+)}, \\ A_{L} &= \frac{N(+,+) + N(+,-) - N(-,+) - N(-,-)}{N(+,+) + N(+,-) + N(-,+) + N(-,-)}, \end{split}$$

$|y_{tt}|$ cut

Likelihood for asymmetry and m_{tt}

• Mean expected number of events in a given m_{tt} (i) and $\cos \theta^*$ (j) bin.

$$\nu(i,j)(\mu,\sigma_{t\bar{t}},\sigma_{Z'},\theta) = L[\epsilon_{t\bar{t}}(i,j,\theta)\sigma_{t\bar{t}} + \alpha_{Z',t\bar{t}}(i,j,\theta)\mu(\sigma_{Z'} + \sigma_{int(Z',t\bar{t})})]$$
(1)

- L for the above is the luminosity. ϵ and α represent the efficiencies for SM background and for signal to fall in the given bin: asymmetry*detector.
- Observed number of events

$$\mathcal{L}(N(i,j)|\mu,\sigma_{t\bar{t}},\sigma_{Z'}) = \sum_{i,j} e^{\nu(i,j)} \frac{\nu^{N(i,j)}}{N(i,j)!}$$
(2)

- We only use statistical uncertainty.
- We can possibly add theoretical uncertainties.