Chris White, Queen Mary University of London

TopFitter: elucidating new physics in the top sector

NExT Workshop

Overview

- Introduction to effective field theory.
- ▶ The TopFitter approach.
- Results.
- Outlook.

Motivation

- ▶ The SM has been highly successful...
- ...despite us having good reasons to doubt its validity (e.g. hierarchy problem, dark matter, naturalness).
- ▶ Plethora of BSM models that are not ruled out by precision tests.
- ▶ How, then, should we look for new physics?

Two paths to new physics

- Two main ways to search:
 - (i) Choose a specific model (e.g. SUSY, technicolor, composite Higgs), and confront with data. Many assumptions, although can choose "generic" scenarios.
 - (ii) **Effective theory**: write down possible corrections to SM on general grounds. Can be completely model-independent!
- ► The second approach is only valid if the energy scale of new physics is above that probed in data.
- ▶ Absence of clear new physics at LHC is a reasonable, but not necessarily sufficient, motivation.

Effective field theory

▶ Basic idea: can parametrise generic corrections to the SM using higher dimensional operators:

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{n=5}^{\infty} \sum_{i} \frac{c_{i}^{(n)}}{\Lambda^{n}} \mathcal{O}_{i}^{(n)}$$

- Λ is the energy scale at which new physics first appears.
- ► Each operator $\mathcal{O}_i^{(n)}$ is of mass dimension n, and contains SM fields only. Gauge invariance manifest.
- ▶ $\{c_i^{(n)}\}$ are undetermined coefficients, that would be fixed by a particular new physics model.

EFT - clarifying example

▶ Imagine there is a new vector boson with mass M_V :

- ▶ The Feynman diagram on the left is $\propto g_V^2 (s m_V^2)^{-1}$, where g_V is the coupling of V to the quarks.
- ▶ If *V* is very heavy, one may approximate

$$\frac{g_V^2}{s - M_V^2} \rightarrow -\frac{g_V^2}{M_V^2} \equiv \frac{c_i}{\Lambda^2},$$

with $c_i \propto g_V^2$, and Λ the new particle mass.

EFT - clarifying example

- ▶ The result for large M_V looks like an effective Feynman rule.
- Comes from an operator in the Lagrangian involving four (anti-)quark fields - indeed dimension six.
- ▶ Corrections to the propagator approximation involve more powers of $1/M_V^2$, so are further suppressed.
- Other effective operators are possible from different types of new physics particle at high energy.

Dimension six operators

- ► There is only a single independent dimension 5 operator, which generates neutrino masses and mixings.
- ▶ Dimension six operators originally classified by Buchmuller, Wyler; Burgess, Schnitzer; Leung, Love, Rao.
- Not all of these are independent equations of motion can be used to reduce the set to 59 (Grzadkowski, Iskrzynski, Misiak, Rosiek). Usually referred to as the "Warsaw basis".
- ► The choice of operator basis is not unique. Some choices may be optimised for different applications (e.g. Higgs, top).
- ► Another choice commonly used in top physics is due to Zhang, Willenbrock.

Top physics in the Warsaw basis

▶ Potentially 16 operators affecting the top sector:

$$\begin{array}{lll} O_{qq}^1 = (\bar{q}\gamma_\mu q)(\bar{q}\gamma^\mu q) & O_{uW} = (\bar{q}\sigma^{\mu\nu}\tau^l u)\tilde{\phi}W_{\mu\nu}^l & O_{\phi q}^3 = i(\phi^\dagger\tau^l D_\mu\phi)(\bar{q}\gamma^\mu\tau^l q) \\ O_{qq}^3 = (\bar{q}\gamma_\mu\tau^l q)(\bar{q}\gamma^\mu\tau^l q) & O_{uG} = (\bar{q}\sigma^{\mu\nu}\lambda^A u)\tilde{\phi}G_{\mu\nu}^A & O_{\phi q}^1 = i(\phi^\dagger D_\mu\phi)(\bar{q}\gamma^\mu q) \\ O_{uu} = (\bar{u}\gamma_\mu u)(\bar{u}\gamma^\mu u) & O_G = f_{ABC}G_{\mu}^{A\nu}G_{\nu}^{B\lambda}G_{\lambda}^{C\mu} & O_{uB} = (\bar{q}\sigma^{\mu\nu}u)\tilde{\phi}B_{\mu\nu} \\ O_{qu}^8 = (\bar{q}\gamma_\mu T^A q)(\bar{u}\gamma^\mu T^A u) & O_{\tilde{G}} = f_{ABC}\tilde{G}_{\mu}^{A\nu}G_{\nu}^{B\lambda}G_{\lambda}^{C\mu} & O_{\phi u} = (\phi^\dagger i D_\mu\phi)(\bar{u}\gamma^\mu u) \\ O_{qd}^8 = (\bar{q}\gamma_\mu T^A q)(\bar{d}\gamma^\mu T^A d) & O_{\phi G} = (\phi^\dagger\phi)G_{\mu\nu}^AG^{A\mu\nu} & O_{\phi\bar{G}} = (\phi^\dagger\phi)\tilde{G}_{\mu\nu}^AG^{A\mu\nu} \\ O_{ud}^8 = (\bar{u}\gamma_\mu T^A u)(\bar{d}\gamma^\mu T^A d) & O_{\phi G} = (\phi^\dagger\phi)G_{\mu\nu}^AG^{A\mu\nu} & O_{\phi\bar{G}} = (\phi^\dagger\phi)\tilde{G}_{\mu\nu}^AG^{A\mu\nu} \end{array}$$

- ► Each of these gives new effective Feynman rules, that can be included in top quark production / decay.
- ► Leads to a general, model-independent programme for constraining new physics in the top sector.

Global fits of EFT

- Assuming the new physics scale Λ is sufficiently high, we can constrain new physics in the top sector as follows:
 - 1. Pick a set of observables \mathcal{O} involving tops (e.g. total cross-sections, p_T and invariant mass distributions, spin correlation measurements).
 - 2. Generate theory predictions $f(\mathbf{C})$ depending on EFT operator coefficients \mathbf{C} .
 - 3. For each choice of C, define

$$\chi^{2}(\mathbf{C}) = \sum_{\mathcal{O}} \sum_{i,j} \frac{(f_{i}(\mathbf{C}) - E_{i})\rho_{i,j}(f_{j}(\mathbf{C}) - E_{j})}{\sigma_{i}\sigma_{j}}$$

where ρ_{ij} is the correlation matrix, and

$$\sigma_i = \sqrt{\sigma_{\mathrm{th},i}^2 + \sigma_{\mathrm{exp},i}^2}.$$

4. Minimise the χ^2 , construct confidence contours etc.

Global fits of EFT

- Different datasets constrain different operators.
- ► For full model independence, need to include all operators in the top sector.
- Also need as many datasets as possible (top pair, single top, production and decay observables).
- This poses considerable technical challenges.

Challenges for Global Fits

- Theory predictions for observables should ideally include higher order QCD corrections, parton shower effects etc.
- It is not feasible to run Monte Carlo generators for all observables at each step in the χ^2 minimisation.
- Especially true given that the number of observables can be large (over 200 individual bins).
- ► Can make progress using techniques borrowed from Monte Carlo tuning (Buckley et. al.).

Analytic parametrisation

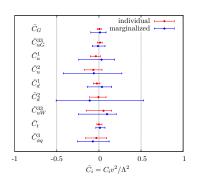
► A given observable (e.g. bin of a distribution) can be approximated by a fitting function:

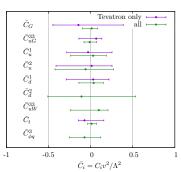
$$f_b(\lbrace C_i\rbrace) = \alpha_0^b + \sum_i \beta_i^b C_i + \sum_{i \leq j} \gamma_{i,j}^b C_i C_j + \dots$$

- ▶ Can sample $N \gg \dim\{c_i\}$ points in the parameter space, and fit coefficients β_i etc. using fast matrix inversion techniques.
- ▶ Resulting *interpolating function* can be used for very fast theory calculations, as input in the global fit.
- ► Technique well tested in the Professor MC tuning framework.
- ► Here it should do even better, as the polynomial dependence is exact for some observables at parton level.

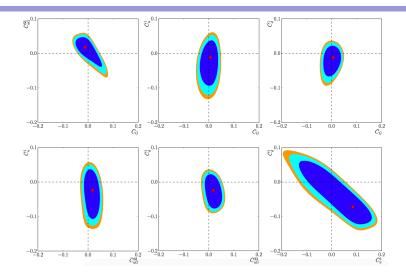
TopFitter

- ► The TopFitter collaboration has produced a proof of principle global fit of top quark EFT (Buckley, Englert, Ferrando, Miller, Moore, Russell, White).
- Theory is LO parton level, supplemented by (bin-by-bin) K factors to estimate NLO QCD effects.
- Operators neglected if completely unconstrained by data, or if interference with SM is heavily suppressed - 12 remain.
- ► For full details, see arXiv:1506.08845 and arXiv:1512.03360.
- ▶ Related work (in top sector) by Perelló Roselló, Vos; Bylund, Maltoni, Tsinikos, Vryonidou, Zhang.

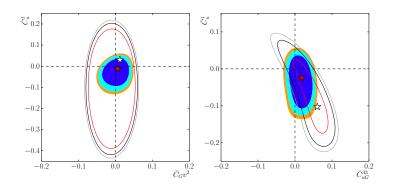

Datasets


Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.
Top pair pr	oduction						
Total cross-sections:				Differential cross-sections:			
ATLAS	7	lepton+jets	1406.5375	ATLAS	7	$p_T(t), M_{t\bar{t}}, y_{t\bar{t}} $	1407.0371
ATLAS	7	dilepton	1202.4892	CDF	1.96	$M_{t\bar{t}}$	0903.2850
ATLAS	7	lepton+tau	1205.3067	CMS	7	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1211.2220
ATLAS	7	lepton w/o b jets	1201.1889	CMS	8	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1505.04480
ATLAS	7	lepton w/ b jets	1406.5375	DØ	1.96	$M_{t\bar{t}}, p_T(t), y_t $	1401.5785
ATLAS	7	tau+jets	1211.7205				
ATLAS	7	$t\bar{t}, Z\gamma, WW$	1407.0573	Charge asymmetries:			
ATLAS	8	dilepton	1202.4892	ATLAS	7	A_C (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1311.6742
CMS	7	all hadronic	1302.0508	CMS	7	A_C (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1402.3803
CMS	7	dilepton	1208.2761	CDF	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1211.1003
CMS	7	lepton+jets	1212.6682	DØ	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1405.0421
CMS	7	lepton+tau	1203.6810				
CMS	7	tau+jets	1301.5755	Top widths:			
CMS	8	dilepton	1312.7582	DØ	1.96	Γ_{top}	1308.4050
$\mathrm{CDF} + \mathrm{D}\emptyset$	1.96	Combined world average	1309.7570	CDF	1.96	Γ_{top}	1201.4156
Single top production				W-boson helicity fractions:			
ATLAS	7	t-channel (differential)	1406.7844	ATLAS	7		1205.2484
CDF	1.96	s-channel (total)	1402.0484	CDF	1.96		1211.4523
CMS	7	t-channel (total)	1406.7844	CMS	7		1308.3879
CMS	8	t-channel (total)	1406.7844	DØ	1.96		1011.6549
D∅	1.96	s-channel (total)	0907.4259				
DØ	1.96	t-channel (total)	1105.2788				
Associated production				Run II data			
ATLAS	7	$t\bar{t}\gamma$	1502.00586	CMS	13	$t\bar{t}$ (dilepton)	1510.05302
ATLAS	8	$t\bar{t}Z$	1509.05276				
CMS	8	$t\bar{t}Z$	1406.7830				

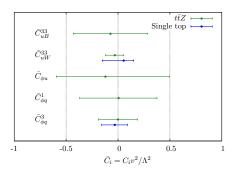
Datasets


- ▶ Mix of top pair, single top, and associated production.
- 227 individual measurements in total.
- Neglecting associated production, can decompose operators into orthogonal sets of 6 and 3, constrained by top pair and single top / decay observables respectively.
- Associated $(t\bar{t}V)$ production currently does not change this picture much, due to large experimental uncertainties.
- Can constrain operator coefficients in two ways:
 - (i) By setting all other coefficients to zero;
 - (ii) By marginalising over all other operators.
- Results presented for both choices.

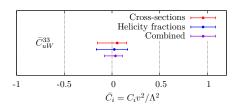
Results



- Upper 6 constrained by top pair, lower 3 by single top.
- ► Top pair more constraining, as expected.
- Can clearly see the importance of LHC data.
- ► Can also look at correlations between operators...



- Red star is best fit point.
- All results so far consistent with SM.


- ▶ Left plot: constraints with / without differential cross-section data.
- ▶ Right plot: constraints with / without LHC data.

Associated Production

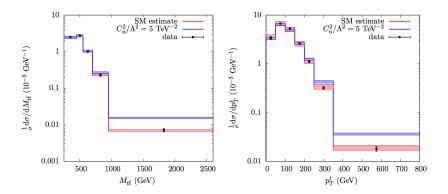
- ► Have studied impact of $t\bar{t}V$ ($V=\gamma,Z$) measurements.
- Much weaker constraints than top pair where relevant (not shown).
- ► In some cases, $t\bar{t}V$ constraints better than single top.
- As more data becomes available, a full global fit will be necessary.

W boson helicity fractions

- There is a single operator constrained by both helicity measurements in top pair, and single top production.
- Constraints comparable from both sources.

Not all helicity measurements can be included due to assumptions in experimental analysis.

Goodness of fit



- ► Can examine goodness of fit $(\chi^2 \text{ per d.o.f.})$ for each dataset.
- No significant tensions observed at this stage.
- Will be interesting as more (precise) data is added.

What next?

- More statistics will be very useful, particularly for $t\bar{t}V$ and single top.
- Spin correlation measurements are crucial for pinning down the difference between CP even / odd operators.
- Some discussion would be useful about what is best to measure for polarisation-based observables.
- Jet substructure studies at 13 TeV would be very interesting, as they isolate the kinematic regime where EFT deviations are enhanced.

EFT and boosted kinematics

Tails of distributions sensitive to EFT effects, even if total rates are not.

Conclusions

- Exciting time for top quark physics!
- Absence of clear new physics means its energy scale could exceed that of the data.
- Can then use EFT to probe new physics in a model-independent way.
- Have shown that global fits of EFT in the top sector are possible.
- Ongoing dialogue useful for enhancing usefulness of data and theory.