Precision neutrino experiments confronting predictive neutrino models: The Littlest Seesaw test-case

Nick Prouse

based on arXiv:1611.xxxx with Steve King (Southampton), Silvia Pascoli (Durham), Peter Ballett (Durham), Tse-Chun Wang (Durham)

Southampton

Wednesday 9th November 2016

What we (don't) know about neutrinos

Knowns

- There are at least three generations
- Only left-handed neutrinos have been observed

Unknowns

- Are there right handed or sterile neutrinos?
- Are neutrinos Dirac or Majorana particles?

EL OQO

What we (don't) know about neutrinos

Knowns

- There are at least three generations
- Only left-handed neutrinos have been observed
- Neutrino flavours oscillate
 - Flavour and mass eigenstates are not the same
 - At least two non-zero masses
 - All three masses are different

Unknowns

- Are there right handed or sterile neutrinos?
- Are neutrinos Dirac or Majorana particles?
- What is the origin of neutrino mass?
- What is the absolute scale of neutrino masses?
- ► Do neutrino oscillations violate CP? $(\delta_{CP} \neq 0, \pi)$

イロト イポト イヨト イヨト

What we (don't) know about neutrinos

Knowns

- There are at least three generations
- Only left-handed neutrinos have been observed
- Neutrino flavours oscillate
 - Flavour and mass eigenstates are not the same
 - At least two non-zero masses
 - All three masses are different
- Two mass-squared differences have been measured
- Three oscillation angles have been measured

Unknowns

- Are there right handed or sterile neutrinos?
- Are neutrinos Dirac or Majorana particles?
- What is the origin of neutrino mass?
- What is the absolute scale of neutrino masses?
- ► Do neutrino oscillations violate CP? $(\delta_{CP} \neq 0, \pi)$
- What is the ordering of the neutrino masses? (sign of Δm_{31}^2)
- What is the octant of the atmospheric mixing angle? (θ₂₃ > 45° or θ₂₃ < 45°)</p>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Experiments measure oscillation probabilities:
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{L m_{i}^{2}}{2E_{\nu}}} \right|^{2}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

 $c_{ij} = \cos \theta_{ij}$ $s_{ij} = \cos \theta_{ij}$ $\Delta m_{ij}^2 = m_i^2 - m_j^2$

三日 のへの

<ロ> (日) (日) (日) (日) (日)

Experiments measure oscillation probabilities: $P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{L m_{i}^{2}}{2E_{\nu}}} \right|$

Atmospheric and accelerator experiments $\nu_{\mu} \rightarrow \nu_{\mu}$

 $|\Delta m_{32}^2| = 2.451^{+0.039}_{-0.038} \times 10^{-3} \text{eV}^2$

Solar and reactor experiments $\nu_{e} \rightarrow \nu_{e}$ $\sin^2 \theta_{23} = 0.440^{+0.023}_{-0.019}$ or $0.584^{+0.018}_{-0.022}$ $\sin^2 \theta_{12} = 0.308^{+0.013}_{-0.012}$ $\Delta m_{21}^2 = 7.49^{+0.19}_{-0.17} \times 10^{-5} \text{eV}^2$ $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{12}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12}e^{i2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$

 $c_{ij} = \cos \theta_{ij}$ $s_{ii} = \cos \theta_{ii}$ $\Delta m_{ii}^2 = m_i^2 - m_i^2$

data from NuFIT 2.2 (2016)

イロト イポト イヨト イヨト

Experiments measure oscillation probabilities: $P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{L m_{i}^{2}}{2E_{\nu}}} \right|^{2}$

Atmospheric and accelerator experiments Solar and reactor experiments $\nu_{\mu} \rightarrow \nu_{\mu}$ $\nu_e \rightarrow \nu_e$ $\sin^2 \theta_{23} = 0.440^{+0.023}_{-0.019}$ or $0.584^{+0.018}_{-0.022}$ $\sin^2 \theta_{12} = 0.308^{+0.013}_{-0.012}$ $|\Delta m_{32}^2| = 2.451^{+0.039}_{-0.038} \times 10^{-3} \text{eV}^2$ $\Delta m_{21}^2 = 7.49^{+0.19}_{-0.17} \times 10^{-5} \text{eV}^2$ $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{12}e^{i\delta_{CP}} & 0 & c_{12} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & -e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$ Reactor and accelerator experiments $\nu_{\mu} \rightarrow \nu_{e}, \nu_{e} \rightarrow \nu_{e}$ $\sin^2 \theta_{13} = 0.02163^{+0.00074}_{-0.00074}$ $c_{ij} = \cos \theta_{ij}$ $\delta_{CP} \sim -\pi/2$?

 $s_{ij} = \cos \theta_{ij}$ $\Delta m_{ij}^2 = m_i^2 - m_j^2$

9th November 2016 3 / 11

data from NuFIT 2.2 (2016)

소리가 소문가 소문가 소문가 드림님

Experiments measure oscillation probabilities: $P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{L m_{i}^{2}}{2E_{\nu}}} \right|^{2}$

Atmospheric and accelerator experiments Solar and reactor experiments $\nu_{\mu} \rightarrow \nu_{\mu}$ $\nu_e \rightarrow \nu_e$ $\sin^2 \theta_{23} = 0.440^{+0.023}_{-0.019}$ or $0.584^{+0.018}_{-0.022}$ $\sin^2 \theta_{12} = 0.308^{+0.013}_{-0.012}$ $|\Delta m_{32}^2| = 2.451^{+0.039}_{-0.038} \times 10^{-3} \text{eV}^2$ $\Delta m_{21}^2 = 7.49^{+0.19}_{-0.17} \times 10^{-5} \text{eV}^2$ $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{12}e^{i\delta_{CP}} & 0 & c_{12} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$ Reactor and accelerator experiments Majorana phases not measurable with oscillation $\nu_{\mu} \rightarrow \nu_{e}, \nu_{e} \rightarrow \nu_{e}$ experiments $\sin^2 \theta_{13} = 0.02163^{+0.00074}_{-0.00074}$ $c_{ij} = \cos \theta_{ij}$ $\delta_{CP} \sim -\pi/2$? $s_{ii} = \cos \theta_{ii}$ $\Delta m_{ii}^2 = m_i^2 - m_i^2$ data from NuFIT 2.2 (2016)

Family symmetries and the seesaw mechanism

- Many viable models to explain neutrino mass and mixing
- Common features include seesaw mechanism and family symmetries

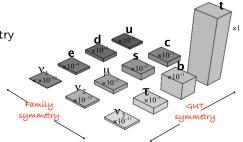
イロト イヨト イヨト イヨ

Family symmetries and the seesaw mechanism

- Many viable models to explain neutrino mass and mixing
- Common features include seesaw mechanism and family symmetries
- (Type I) Seesaw mechanism
 - Right handed neutrino for each left-handed neutrino mass
 - Dirac mass terms m_D at electroweak scale
 - Majorana mass term M_R at grand unification scale

$$\bullet \quad \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_R^c \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

- Diagonalising gives very small left handed neutrino mass $m_L^{\nu} \approx -m_D M_R^{-1} m_D^T$


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Family symmetries and the seesaw mechanism

- Many viable models to explain neutrino mass and mixing
- Common features include seesaw mechanism and family symmetries
- (Type I) Seesaw mechanism
 - Right handed neutrino for each left-handed neutrino mass
 - Dirac mass terms m_D at electroweak scale
 - Majorana mass term M_R at grand unification scale

$$\bullet \quad \left(\bar{\nu}_L \quad \bar{\nu}_R^c\right) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

- Diagonalising gives very small let $m_L^{\nu} \approx -m_D M_R^{-1} m_D^T$
- Discrete non-abelian family symmetry
 - Provides explanation of flavour structure of SM
 - Unifies fermions within each family
 - Places constraints on mixing parameters

Littlest Seesaw model

The Littlest Seesaw (LS) model provides a physically viable seesaw model with the fewest free parameters [arXiv:1512.07531]

- Based on sequential dominance with 2 right handed neutrinos
 - Dominant RH neutrino gives atmospheric neutrino mass
 - Subdominant RH neutrino gives solar neutrino mass

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

Littlest Seesaw model

The Littlest Seesaw (LS) model provides a physically viable seesaw model with the fewest free parameters [arXiv:1512.07531]

- Based on sequential dominance with 2 right handed neutrinos
 - Dominant RH neutrino gives atmospheric neutrino mass
 - Subdominant RH neutrino gives solar neutrino mass
- Constrained sequential dominance
 - Family symmetry provides constraints on LH neutrino mass matrix
 - ▶ LSA mass matrix from S_4 or A_4 [arXiv:1304.6264, arXiv:1512.07531]

$$m_{\text{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$

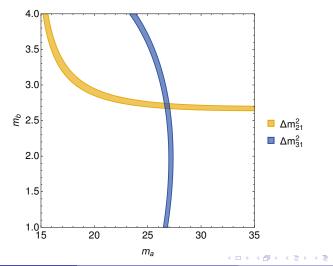
• LSB mass matrix from $S_4 \times U(1)$ [arXiv:1607.05276]
 $m_{\text{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}$

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

Littlest Seesaw model

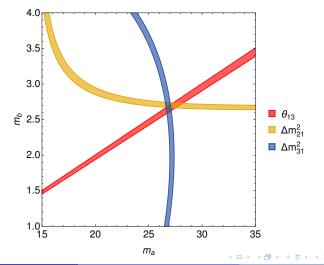
The Littlest Seesaw (LS) model provides a physically viable seesaw model with the fewest free parameters [arXiv:1512.07531]

- Based on sequential dominance with 2 right handed neutrinos
 - Dominant RH neutrino gives atmospheric neutrino mass
 - Subdominant RH neutrino gives solar neutrino mass
- Constrained sequential dominance

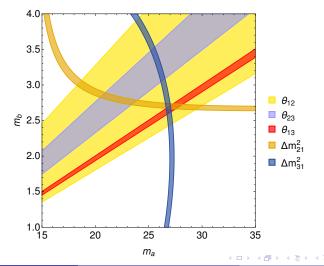

- Family symmetry provides constraints on LH neutrino mass matrix
- ▶ LSA mass matrix from S_4 or A_4 [arXiv:1304.6264, arXiv:1512.07531]

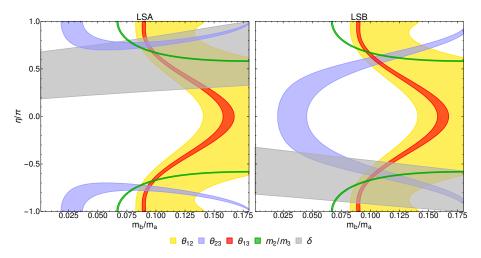
$$m_{\mathsf{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$

LSB mass matrix from $S_4 \times U(1)$ [arXiv:1607.05276]
 $m_{\mathsf{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}$


• $e^{i\eta}$ can also be fixed to a cube root of unity with Z_3 symmetries

Diagonalising mass matrix gives LH neutrino masses and mixing matrix


Fixing η to $\eta = 2\pi/3$ successfully reproduces mixing angles and masses Allowed regions in $m_a - m_b$ plane correspond to experimental measurements


Fixing η to $\eta = 2\pi/3$ successfully reproduces mixing angles and masses Allowed regions in $m_a - m_b$ plane correspond to experimental measurements

Fixing η to $\eta = 2\pi/3$ successfully reproduces mixing angles and masses Allowed regions in $m_a - m_b$ plane correspond to experimental measurements

With η free, dimensionless parameters depend only on m_b/m_a and η

イロト イヨト イヨト イヨ

Future oscillation experiments

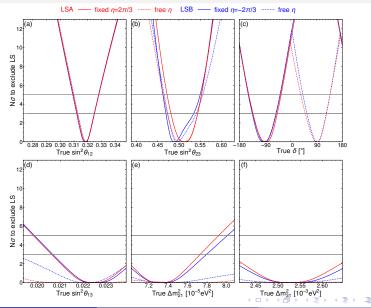
Use GLoBES package to simulate future experiments

DUNE

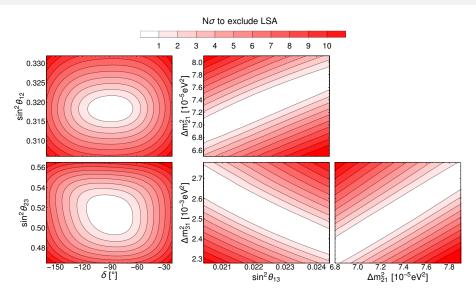
- Long baseline accelerator experiment
- δ_{CP} precision of 10° to 20°
- $\sin^2 \theta_{23}$ at 1 to 3%
- Δm^2_{32} at 0.4%

Daya Bay

- Short baseline reactor experiment
- ▶ $\sin^2 \theta_{13}$ at 3%


Hyper-Kamiokande

- Long baseline accelerator experiment
- δ_{CP} precision of 7° to 18°
- ▶ $\sin^2 \theta_{23}$ at 1 to 3%
- $\blacktriangleright ~|\Delta m^2_{32}|$ at 0.6%


JUNO & RENO-50

- Medium baseline reactor experiments
- ▶ $\sin^2 \theta_{12}$ at 0.5%
- Δm^2_{21} at 0.5%

Fit simulated data to standard mixing and to LS models to determine sensitivity

-

12

イロト イヨト イヨト イヨ

- Neutrino oscillation physics now entering precision era with measurements on all parameters
- Many models exist to explain neutrino masses and mixing

EL OQO

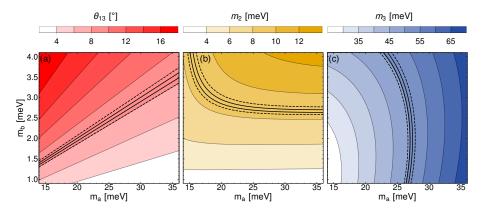
<ロト <回ト < 回ト < 回ト

- Neutrino oscillation physics now entering precision era with measurements on all parameters
- Many models exist to explain neutrino masses and mixing
- Constraints from family symmetries give testable predictions
- Littlest seesaw provides a highly predictive model capable of reproducing existing measurements and predicting all neutrino masses and mixing parameters
- Future experiments DUNE / Hyper-K and JUNO's measurements of δ , θ_{23} θ_{12} will give strong test of LS model
- Combining measurements of θ_{13} , Δm^2_{31} , Δm^2_{31} could also exclude LS

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

- Neutrino oscillation physics now entering precision era with measurements on all parameters
- Many models exist to explain neutrino masses and mixing
- Constraints from family symmetries give testable predictions
- Littlest seesaw provides a highly predictive model capable of reproducing existing measurements and predicting all neutrino masses and mixing parameters
- Future experiments DUNE / Hyper-K and JUNO's measurements of δ , θ_{23} θ_{12} will give strong test of LS model
- Combining measurements of θ_{13} , Δm^2_{31} , Δm^2_{31} could also exclude LS
- Similar procedure can be applied to other predictive models of neutrino mass
- Distinguishing these models experimentally important step in understanding the flavour structure of the Standard Model

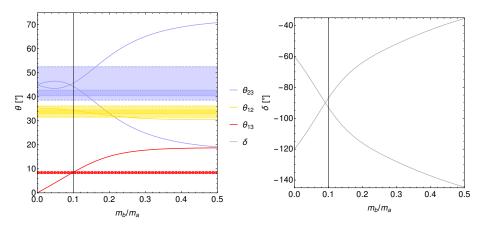
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()


- Neutrino oscillation physics now entering precision era with measurements on all parameters
- Many models exist to explain neutrino masses and mixing
- Constraints from family symmetries give testable predictions
- Littlest seesaw provides a highly predictive model capable of reproducing existing measurements and predicting all neutrino masses and mixing parameters
- ► Future experiments DUNE / Hyper-K and JUNO's measurements of δ , θ_{23} θ_{12} will give strong test of LS model
- Combining measurements of θ_{13} , Δm^2_{31} , Δm^2_{31} could also exclude LS
- Similar procedure can be applied to other predictive models of neutrino mass
- Distinguishing these models experimentally important step in understanding the flavour structure of the Standard Model

Thank you for your attention!

(日) (同) (三) (三) (三) (○) (○)

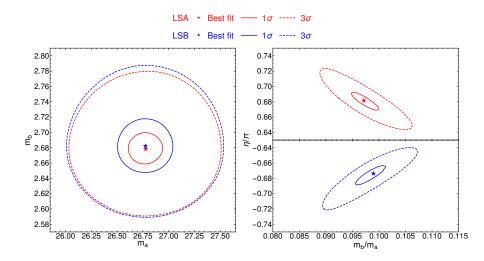
Backup Slides


Predictions of LS model

<ロ> (日) (日) (日) (日) (日)

三日 のへの

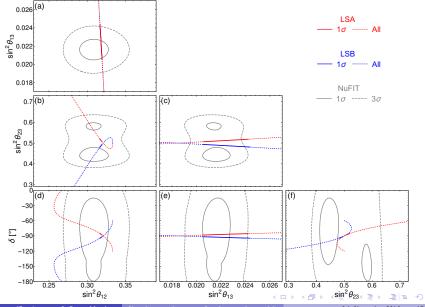
Predictions of LS model



・ロト ・回ト ・ヨト ・ヨ

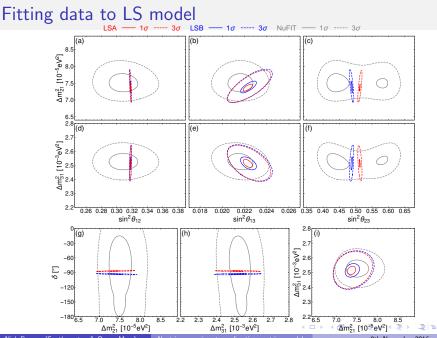
Fitting data to LS model

	LSA		LSB		NuFIT 2.2
	η free	η fixed	η free	η fixed	global fit
$m_a \; [meV]$	27.22	26.78	27.14	26.77	
$m_b \; [{\sf meV}]$	2.653	2.678	2.658	2.681	
$\eta~[{\sf rad}]$	0.680π	$2\pi/3$	-0.678π	$-2\pi/3$	
θ_{12} [°]	34.37	34.34	34.36	34.33	$33.72_{-0.76}^{+0.79}$
θ_{13} [°]	8.45	8.58	8.48	8.59	$8.46^{+0.14}_{-0.15}$
θ_{23} [°]	45.01	45.69	44.87	44.30	$41.5^{+1.3}_{-1.1}$
δ [°]	-89.9	-87.0	-90.6	-93.1	-71_{-51}^{+38}
$\Delta m^2_{21} \ [10^{-5} {\rm eV}^2]$	7.499	7.362	7.482	7.379	$7.49^{+0.19}_{-0.17}$
$\Delta m_{31}^2 \ [10^{-3} {\rm eV}^2]$	2.505	2.515	2.505	2.515	$2.526_{-0.037}^{+0.039}$
$\Delta\chi^2/{ m d.o.f}$	4.7/3	6.4/4	4.5/3	5.1/4	


Fitting data to LS model

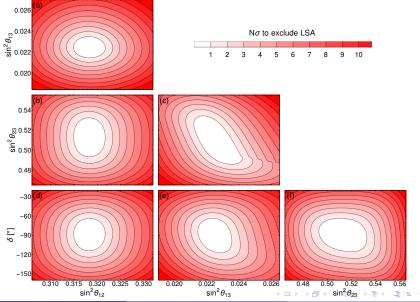
-

A D > A B > A B > A

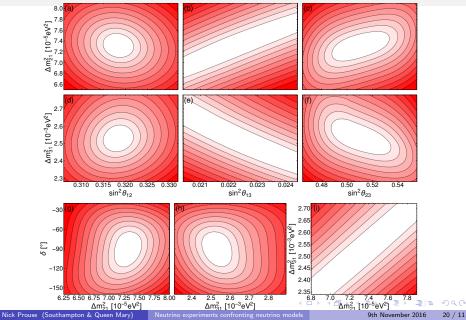

Fitting data to LS model

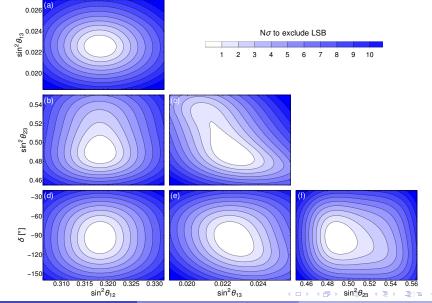
Nick Prouse (Southampton & Queen Mary)

Veutrino experiments confronting neutrino model

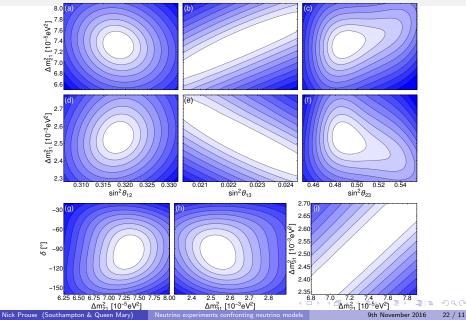

9th November 2016 17 / 11

Nick Prouse (Southampton & Queen Mary)


Neutrino experiments confronting neutrino models


9th November 2016 18 / 11

Nick Prouse (Southampton & Queen Mary)


Neutrino experiments confronting neutrino model

Nick Prouse (Southampton & Queen Mary)

Neutrino experiments confronting neutrino model

