
xFitter Releases

S. Glazov, xFitter meeting, Oxford, 21 March 2017

1

Outline

• Updates in code management: gitlab, jira

• Release strategy

• The first git release: 2.0.0 FrozenFrog

• Step forward: 2.1.0

• Long-term planing.

2

Work flow

• Make use of CERN GitLab and JIRA for the code management and

controlling feature development and bug fixes. The git repository is

open for reading for everybody.

• Developers without CERN account can contribute using open mirror

https://gitlab.com/fitters/xfitter.

3

Release strategy

• Introduce sequence of more stable followed up by more

code-development oriented releases

• First stable git release is 2.0.0 FrozenFrog, to be followed by

2.1.0 in late summer

• A few developments on 2.1.0 already, using git dedicated branch,

while last ∼ month before the release was focused to make sure

that 2.0.0 is stable.

• Users looking for recent developments may use git master

branch, which is ensured to be compilable. The latest

developments aimed for 2.1.0 release will be soon merged to it.

4

Release 2.0.0: FrozenFrog

• First git release, focused on stability of the code.

• No new major changes in the code structure, freezing old developments.

• A few rarely used options checked and some of them fixed to work

again.

• Work of many developers helping to release the code.

5

Getting full install

To get most of the packages automatically, use install-xfitter
script from the release or from the xFitter download page.

tools/install-xfitter

usage:

tools/install-xfitter <version|deps>

available versions:

2.0.0

master

to reinstall only dependences, run:

tools/install-xfitter deps

• For SL6, CentOS7 uses /cvmfs/sft.cern.ch compilers

• Most of the main packages are installed and configured:

LHAPDF6, APPLGRID (HOPPET), APFEL, APFELGRID,

MELA.

6

Getting data

The release comes with minimal set of data files. Many more data are
available from http://xfitter.hepforge.org/data.html and can be
downloaded using helper script xfitter-getdata.sh

bin/xfitter-getdata.sh -p

available data sets in xFitter (to download use arXivNumber or reportNumber)

Collider Experiment Reaction arXivNumber or reportNumber

fixedTarget bcdms inclusiveDis cern-ep-89-06

hera h1 beautyProduction 0907.2643

...

lhc atlas drellYan 1305.4192

...

lhc cms jets 1212.6660

...

tevatron cdf jets 0807.2204

bin/xfitter-getdata.sh 1212.6660

The script has other useful options, e.g. download all the data at ones.

→ Future releases may also include automatic download of the

APPLGRID/FastNLO tables.

7

Getting fast with APFELgrid

The pp APPLGRIDs can be converted to “APFELgrids” which

combine evolution and convolution in one step, saving both

computing time and memory. In xFitter this can be done on the fly,

by using ’APFELGRID’ as the reaction type and changing the file

name suffix to ’.fk’. In addition, there is a helper script for that:

tools/ToAppfelGrid.py

Usage:

file.dat -- convert data file, generate file.dat_fk

steering.txt -- convert steering.txt and connected data files, generate steering.txt_fx (plus

ALL -- convert all data files following standard datafiles/ data tree, generate _fk

steering.txt SPLIT -- prepare steering.txt files to run in parallel on the batch, to speedup

Example speedup: for ATLAS inclusivejets R06 00 03.dat

from 65 to 25 msec per iteration (probably χ2 calculation dominated).

Computation of fk grids requires some time; they are to be

re-calculated if evolution parameters such as mC ,mB, αS change.

8

Logo matters

• Default logo for the release displays release name

• For working on a git branch, number of commits from the release and

last commit label are displayed (from git describe)

• --no-version removes version, as before.

• LiberationSans-Regular.ttf is used by default, best matching font

(selected by fc-match) is used if not present. Recommendation is to

install LiberationSans-Regular.ttf for common look.

9

User interface
Standard data file format using “namelist” format (predating HTML):

&DATA

Name = ’ATLAS 2.76 TeV Jet data 0 <= |y| < 0.3 R=0.4’

NDATA = 10

NColumn = 28

ColumnType = 2*’Bin’,2*’Dummy’,’Sigma’,’Error’,22*’Error’

ColumnName = ’pt1’,’pt2’,’YBinSize’,’NPCorr’,’Sigma’,’stat’,

’JES1_RelSys_1’ , ’JES2_RelSys_7’

...

Reaction = ’pp jets APPLGRID’

TheoryType = ’expression’

TermName = ’A1’, ’K’

TermType = ’applgrid’,’kfactor’

TermSource = ’datafiles/lhc/atlas/jets/1304.4739/atlas-incljets-R04-eta1.root’,

’datafiles/lhc/atlas/jets/1304.4739/inclusivejetsKF_R04_00_03.dat’

TheorExpr= ’K*A1*1000’

...

&End

Move to yaml ? Example of LHAPDF info file:
SetDesc: HERAPDF

Authors: ...

Reference: ...

Format: lhagrid1

DataVersion: 1

NumMembers: 1

Flavors: [-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 21]

....

→ perhaps we will allow for both formats for future releases.

10

Release 2.1.0

• Work on release 2.1.0 is in progress, major goals and tasks distributed.

• Major change in theory modules interface, substantial progress already.

See talks from Sasha and Artur later today.

11

New theory modules interface: basic ideas

• xFitter provides simple interface to include new data for existing

methods of theory calculation (e.g. APPLGRID and FastNLO).

The interface is flexible enough to include additional kFactors

and operations, such as predictions of normalised cross sections.

All is done inside text files, without need to touch xFitter code.

• Adding new theory modules, however, is a rather cumbersome

task which contains in parts changes of the core xFitter code.

→

• Provide new modular interface for the theory predictions,

together with helper scripts.

• Loadable during execution.

• Maintain code optimization.

• Make sure that old Fortran codes are compatible with the new

interface.

12

New theory modules: some technical details

Currently can be tried using theory-interface branch, which is the

starting point for release 2.1.0. Implementation details may change

New interface class ReactionTheory:

class ReactionTheory // must derrive from this class

virtual string getReactionName() const =0; // Should return expected reaction name.

// normally generated automatically by AddReaction.py

// To be used in data files.

virtual int initAtStart(const string &) =0; // Initialization first time ReactionTheory implementation is called

virtual int compute(int dataSetID, valarray<double> &val, map<string, valarray<double> > &err) = 0;

// Return back results for a given dataset. Optionally return uncertainties

...

// Global parameters are transferred as maps:

virtual void setxFitterParameters(map<string,double*> &xfitter_pars) {_xfitter_pars = xfitter_pars; }; ///< Set environment map

virtual void setEvolFunctions(double (*palpha_S)(double *), map<string, pTwoParFunc> *func2D) { alpha_S = palpha_S; PDFs = func2D;

///< Set alpha_S and PDF maps

...

// Helper functions to emmulate LHAPDF6 calls:

void xfx(double x, double q, double* results){double q2=q*q; (*_xfx)(&x,&q2,&results[0]); };

double xfx(double x, double q, int iPDF){ double pdfs[13]; xfx(x,q,pdfs); return pdfs[iPDF+6];};

// Helper function to get a parameter

double GetParam(string name) const

{

return *_xfitter_pars.at(name);

}

Can be then called in data files using Reaction = ’reaction’ type; can be

mixed with k-factors and other theory calculations in a usual way.

13

Modular evolution

• The core of xFitter is the QCDNUM based evolution.

• The evolution code is flexible, fast, and resource friendly.

QCDNUM allows for simple usage of other evolution programs.

• Nevertheless for many tasks QCDNUM is not required, e.g.

LHAPDF6+Grid based profiling, kT-evolution.

• Several new developments are foreseen in changing the evolution

codes: would be nice to allow inclusion of them without

touching core of xFitter.

→

• New modular evolution.

• Loadable during execution.

• Interfaces to the new ReactionTheory modules, χ2 codes, PDFs,

αS , etc.

No concrete code yet, only ideas.

14

Gluing things together

• Already in FrozenFrog xFitter is provided as a shared library.

• Further experimental developments in boost python branch

which uses boost libraries for python-c++ interface.

• Different modules can be loaded in scripts as they needed.

• Full implementation is beyond 2.1.0

#!/usr/bin/env python

import sys

sys.path.append("./lib")

import libxfitter_fit as xfitter

execute using standard steering files:

xfitter.logo()

xfitter.read_steer()

xfitter.read_data()

xfitter.init_theory()

xfitter.fit()

15

New physics in 2.1.0

• Already included in planning:

– Total tt̄ cross section: updates to Hathor2.0 and new

implementation of Top++.

– SACOT−χ at NNLO.

– New TMD codes.

• May be added:

– Interfaces to resummation codes.

– ACOT using fast QCDNUM convolution.

– NNLO CC RT-scheme

– MMHT tolerance method

– Updates in Hessian PDF uncertainties:

∗ Update in ITERATE error band code

∗ Introduce Levenberg-Marquardt algorithm

– Merge with mcgen

– IPython/mathematica notebooks

• Other improvements may come “automatically” with improvements of

FastNLO and APPLGRID.

16

Beyond 2.1.0

• Fully modular code

• Revision of user interfaces

• Better connection to HepData

• Alternative evolutions (e.g. inclusion of resummation)

• Fragmentation functions, mixed PDF/FF fits.

→ user’s input is essential for future planning.

17

Sharing is good

xFitter is built on contributions from many people, many

groups.

We have a policy to acknowledge them all, described in

REFERECES file, distributed with the package. We

checked/updated this file for the FrozenFrog release.

Further ways to share:

• Share data files (we can arrange basic checks)

• Share appl/FastNLO grids – we should agree what is

the best place to store them.

18

https://gitlab.cern.ch/fitters/xfitter/blob/master/REFERENCES

Summary

• New stable release 2.0.0 FrozenFrog: preparation for

major leap forward.

• Planned release 2.1.0 with significant changes in the

internal structures.

• Simplifications of the code development and

maintenance.

• A few theory developments to be included.

→ User’s feedback is needed to define long-term strategy.

19

Extras

20

New theory modules interface: basic ideas

• Based on C++ code. To simplify interface to fortran codes, use

single instance of an object for each theory module working on

multiple data sets.

• Theory modules are included as a part of expression interface:

usual operations as for APPLGRID and fastNLO are supported.

• Connection between core of xFitter and theory modules is

implemented using standard C++ objects, ensuring modularity:

modules can be developed outside xFitter.

• Theory modules are stored as shared libraries, loaded at

run-time. Currently loading is performed in C++ code, can

eventually be replaced by python.

21

Communication between modules and xFitter

• Basic idea: use standard library maps.

• xFitter, minuit parameters: maps of double, e.g.

double fs = pars[’fs’];

This means that ExtraParameters are auotmatically visible by the

modules, without need for extra xFitter code.

• αS , PDFs: maps of functions, e.g.

double (*xg)(double *, double *) = PDFs[’xg’];

double gluon = xg(0.001,10.0);

• Data bins are provided as maps of vectors of doubles, e.g

double y[] = BINS[’y’];

22

Interface class for the module

typedef double (*pxFx)(double*, double*);

typedef double (*pZeroParFunc)();

typedef double (*pOneParFunc)(double*);

typedef double (*pTwoParFunc)(double*, double*);

class ReactionTheory

{

public:

ReactionTheory() {};

˜ReactionTheory() {};

ReactionTheory(const ReactionTheory &);

ReactionTheory & operator =(const ReactionTheory &);

public:

virtual string getReactionName() const =0;

virtual void initAtStart(const string &) =0;

virtual void setxFitterParameters(map<string,double> &xfitter_pars) {*_xfitter_pars = xfitter_pars; };

virtual void setEvolFunctions(double (*palpha_S)(double *) , map<string, pxFx> &) { alpha_S = palpha_S; };

virtual void setExtraFunctions(map<string, pZeroParFunc>, map<string, pOneParFunc>, map<string, pTwoParFunc>) { };

virtual void initAtIteration() {};

virtual void setBinning(map<string,vector<double> > dsBins){ *_dsBins = dsBins; } ;

virtual int compute(valarray<double> &val, map<string, valarray<double> > &err) = 0;

protected:

virtual int parseOptions() { return 0;};

double (*alpha_S)(double *);

...

};

23

Code organization

• Store modules in reactions/NAME subdirectories.

• Relations between name and shared library is given in

Reactions.txt file

• Script to automatically generate templates for the source code,
Makefile, ...:

glazov@padushka3:˜/xfitter$ python tools/AddReaction.py MyModule

Creating directories in reactions/MyModule

Creating header file reactions/MyModule/include/ReactionMyModule.h

Creating source file reactions/MyModule/src/ReactionMyModule.cc

Creating source file reactions/MyModule/src/Makefile.am

Update configure.ac file

Update Makefile.am

24

Examples of auto-generated files

• Reactions.txt:
fastNLO libfastnlo_xfitter.so

MyModule libmymodule_xfitter.so

• ReactionMyModule.h:
class ReactionMyModule : public ReactionTheory

{

public:

ReactionMyModule(){};

public:

virtual string getReactionName() const { return "MyModule" ;};

void initAtStart(const string &);

virtual int compute(valarray<double> &val, map<string, valarray<double> > &err);

protected:

virtual int parseOptions(){ return 0;};

};

• ReactioMyModule.src:
#include "ReactionMyModule.h"

...

// the class factories

extern "C" ReactionMyModule* create() {

return new ReactionMyModule();

}

...

25

Test run
• The auto-generated files are ready to be compiled:
make install

...

CXX ReactionMyModule.lo

CXXLD libmymodule_xfitter.la

..

• Use .. 1506.06042/HERA1+2 NCep 920-thexp.dat file as
a template:
TheoryType = ’expression’

TermName = ’R’

TermType = ’reaction’

TermSource = ’MyModule’

TermInfo = ’’

TheorExpr = ’R’

• Run xfitter, you should see “MyModule” printed before the data

file is loaded.

• If you are done with tests and want to remove the test module,
revert to the git head:

git checkout – Reactions.txt Makefile.am configure.ac

26

Further steps and other discussions

• While the main infrastructure is in place, a few things require

implementation: pointers to αS , PDFs, data are not yet in place.

Plan to implement in near future

• APPLGRID, FastNLO and other “simple” modules such as

Hathor should be easy to transfer to the new interface.

• For DIS, some further ideas are needed: basic building blocks

are SF (F2, FL, ...) but theory expression mechanism does not

foresee complex formula.

• Ideas for improving global HF steering, e.g. by process and

dataset name:

DIS_Schemes = ’NC_DIS = RTOPT’,

’CC_DIS = ZMVFNS’, ’H1cc = ACOT’

27

