Compute services at CERN

Gavin McCance

Tier-0 compute services 2017

- Universal resource provisioning layer for bare metal, containers and VMs
- HTCondor as the single end user interface
- Continue investing in automation and other communities for scaling with fixed staff
- · Self service for end users within the policies and allocations

Tier-0 compute services 2017

- Universal resource provisioning layer for bare metal, containers and VMs
- HTCondor as the single end user interface
- Continue investing in automation and other communities for scaling with fixed staff
- · Self service for end users within the policies and allocations

Compute Workloads

Compute Workloads

High-throughput batch service

- 113k CPU cores and increasing
 - LHC: Prompt Tier-0 calibration / hot events
 - LHC: Tier-0 bulk reconstruction
 - LHC: Our share of WLCG Grid quota
 - All other CERN experiments (e.g. Compass)
 - Associated experiments (e.g. AMS)
 - Various local CERN groups in EP (ATLAS, LHCb, etc)
 - Typically delivering around 500k jobs per day

High-throughput batch service

- Batch service balances the <u>fair-share</u> across all competing applications according to CERN resource policies
- Users interaction pattern: "submit a job, sits in queue, runs, get result back"

- Currently migrating from proprietary product (LSF) to Open Source HTCondor
- We also run misc Griddy services (Compute Element and Argus) interfacing WLCG Grid to local site resources

Batch HTC challenges and plans

- Scaling the service for Run3 and beyond
- Understanding and improving overall CPU efficiency (currently 60%)
- Moving 1300 users to Condor (~end of Run2) and retiring LSF
- Expanding into the external cloud / hosting...

Computing scale challenge

The outline LHC schedule out to 2035 presented by Frederick Bordry to the SPC and FC June 2015 can be found here

• Efficiency studies...!

• Expand to public cloud?

 Volunteer computing?

Ions

To the public cloud and beyond..

- Investigating extending HTCondor pool to include external cloud resources
- IBM Softlayer -> T-Systems -> HNScience Cloud
- Public procurement challenge
- From technical HTCondor point of view, adding external nodes was quite easy
- More work involved from puppet infrastructure, monitoring, cloud APIs, and coordination with experiments
 - Standard tooling (cf. interfaces) critical

Recent activity: T-Systems

- Batch resources fully loaded
 - shared among VOs

- Mixture of "CPU-intensive" and "network-intensive" tasks
 - MC workloads tend to dominate: easier to manage?

	Max	Avg 🕶
LHCB tsy	99.05	85.04
ALICE tsy	93.83	75.98
ATLAS tsy	100.00	64.13

11

- WAN largely used
 - Sometimes even saturated

ITTE IT-CM-IS

Compute Workloads Server High HPC Opportunistic Throughput Hosting Cost per Unit Work Accessibility Potential Usage

LHC@home

- Scavenged resources
 - Allows us to get additional computing resources
 - Volunteers (e.g. home PCs)
 - Institute desktops
 - Supercomputing backfill
 - Small farms with easy deployment!
- Unpredictable but significant resources
- Target CPU bound simulations (not data intensive)
 - Over 50% of LHC compute is simulation!
- Outreach benefits!

Lots of potential resources...

Cern BOINC projects statistics

Showing last 7 days

Opportunistic challenges and plans

- Resources free but ops cost is not
- <u>Reduce ops overhead</u> leverage same technologies as we're using to expand into the cloud (e.g. Condor)
- Ramping up capacity and ensure the BOINC infrastructure can scale
- Continue to work with experiments to find workload that's suitable for this use-case

