

HPC Service status and plans

Carolina Lindqvist, Philippe Ganz, Nils Høimyr

IT/CM

20/10/2016

High Performance Computing (HPC)

- Applications and use cases that do not fit the standard batch HTC model. Typically parallel MPI applications
 - Theory Lattice QCD studies (TH)
 - Accelerator physics, beam simulation, plasma simulations... (BE, TE)
 - Computation Fluid Dynamics, CFD (EN, EP, HSE)
 - Additionally structural analysis, field calculations (EN,PH,TE), currently mainly on Windows fat boxes (run by colleagues in IT/CDA)
- Job duration often very long, (e.g. several weeks for CFD and QCD)
 - Stability of OS and environment critical
 - MPI application performance require fast interconnects with low latency between nodes in a cluster. Some applications also require fast access to shared storage

Current "HPC" facilities in IT

- Ixbatch resources (SLC6) running MPI over LSF:
 - eng, cfd (Xeon 12 core low latency 10Gb)
 - Spacecharge Large batch nodes running MPI in one box
- New Theory QCD Infiniband cluster
 - 72 Quanta E4 16 core / 64Gb
 - Infiniband FDR interconnects
 - Puppet HG ithpc/linux/qcd, soon bi/hpc/qcd
- Dedicated (recent) clusters for TE plasma simulations and HSE CFD
 - Quanta 16 core / 128Gb with low latency 10Gb ethernet
 - Puppet HG ithpc/linux, nodes running CC7
- Windows Engineering HPC service (Ansys, Comsol etc, IT-CDA)

HPC service - challenges

- Special hardware (Infiniband interconnects, storage requirements)
- Sensitive environment stack with respect to system updates
- Limited MPI and HPC competence (need to draw on expertise in the group and department)
- Application competence often missing in the user community
 - HPC application level support very expensive
 - Go as far as possible with documentation and examples
- Central batch HPC resources vs special use cases (e.g. TH)
 - Funding for a general HPC facility only next year
 - Batch service currently in transition (LSF to Condor)

HPC service - roadmap

- TH cluster released to users
 - Further integration with batch in progress
- Investigate options for HPC with HTCondor (Tech student)
 - Condor parallel universe? Other batch scheduler?
 - MPI job submission with HTCondor?
 - Backfill with HTCondor on HPC resources
- Build up initial batch HPC with existing hardware and extend with new Infiniband cluster in 2017
 - JIRA: project BBC, component: HPC
 - Project outline: http://cern.ch/batchprojects

HPC project - people

- Nils (lead, service management)
- Technical student Philippe Ganz
 - Focus on MPI performance, job submission, batch scheduler and HTCondor evaluation and application launch templates
- Fellow Carolina Lindqvist
 - Focus on service development, notably integration with the batch service and other IT infrastructure, monitoring and scalability

HPC – related stuff

- Windows HPC for Engineering applications
 - Windows HPC cluster operated by CDA
 - Possible use of Linux HPC back-end in the future
- Applications running requiring fat boxes
 - Memory requirements, e.g. 512 Gb to 1 Tb
 - Engineering applications (Ansys HFSS, CST...)
 - Microelectronics
 - Other use cases that cannot scale with MPI across clusters for application or licencing reasons
 - Requests for such resources will come our way how to provision them?

Current installation – TH Cluster

- Puppet-managed installation
 - CephFS-based home directories for users.
 - Modules for OFED/Mellanox driver and MPI installations.
 - Basic monitoring using Lemon sensors and Kibana dashboards.
- Current work
 - Preparing the configuration to be applied on the whole new cluster.
 - Using OSU benchmarks to compare performance of MPI on old cluster vs. new configuration.

Current installation – Batch cluster

- Also a puppet-managed installation
 - Users' home directories on AFS.
 - Reusing module for OFED driver and MPI installations.
 - Reusing monitoring components.
- Current work
 - Preparing the configuration to be applied on the whole new cluster, and using OSU benchmarks to check MPI performance.
 - Enabling the parallel universe in HTCondor and configuring the nodes as HPC worker nodes which accept HPC jobs.

Questions?

