

Charmonium decays at BESIII

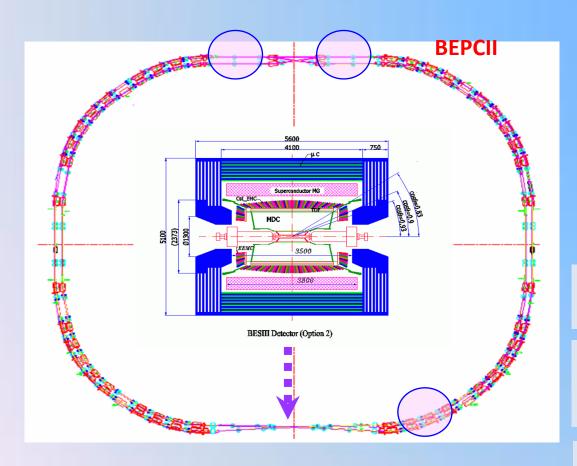
Bo Zheng

(For the BESIII Collaboration)

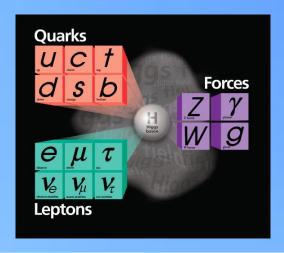
University of South China Helmholtz-Institut Mainz

Hadron 2017, 25-29th September, Salamanca, Spain

BEPCII/BESIII



The BEPCII has achieved the designed luminosity 1×10^{33} cm⁻²s⁻¹ at Apr. 2016.



MDC: σ_{xy} =130 μ m, dE/dx=6%

 $\sigma_{\rm p}/{\rm p} = 0.5\% \ {\rm at} \ 1 \ {\rm GeV}$

TOF:

Plastic scintillator : σ_T (barrel): 80 ps

MRPC: σ_T (endcap): 70 ps

EMC: CsI(TI)

At 1 GeV σ_{E} (%) σ_{I} (mm)

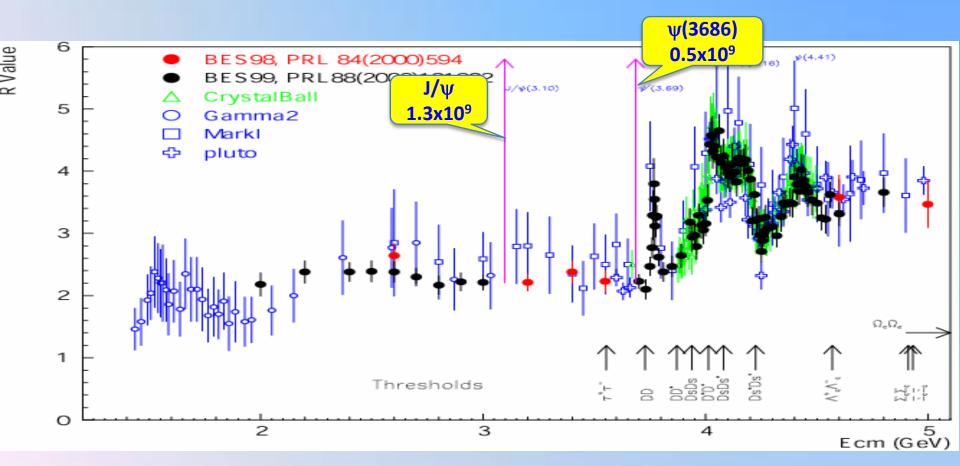
Barrel: 2.5 6.1

Endcap: 5 9

MUC: σ_{spatial} : 1.48 cm

Data samples at BESIII

World larges charmonium data sets directly produced from e⁺e⁻ collision on J/ ψ and ψ (3686) resonance, and many other data sets from 2-4.6 GeV



Recent charmonium results

Study of $\psi(nS) \rightarrow \Lambda \overline{\Lambda}$, $\Sigma^0 \overline{\Sigma}{}^0$, $\Sigma(1385)^0 \overline{\Sigma}(1385)^0$, $\Xi^0 \overline{\Xi}{}^0$

Measurement of ψ (3686) → $\gamma \pi^0$, $\gamma \eta$, $\gamma \eta'$

Observation of $\psi(3686) \rightarrow e^+e^-\chi_{cJ}$ and $\chi_{cJ} \rightarrow e^+e^-J/\psi$

Higher-order multipole amplitudes in $\psi(3686) \rightarrow \gamma \chi_{c1,2}$

Observation of $\chi_{c0,2} \rightarrow \eta \eta'$, $\eta' \eta'$

Observation of $\chi_{c2} \rightarrow K(892)*K$ and study of $\chi_{c2} \rightarrow \rho^{\pm} \pi$

Observation of $\chi_{cJ} \rightarrow \Sigma^{+} \overline{\Sigma}^{-}$, $\Sigma^{0} \overline{\Sigma}^{0}$

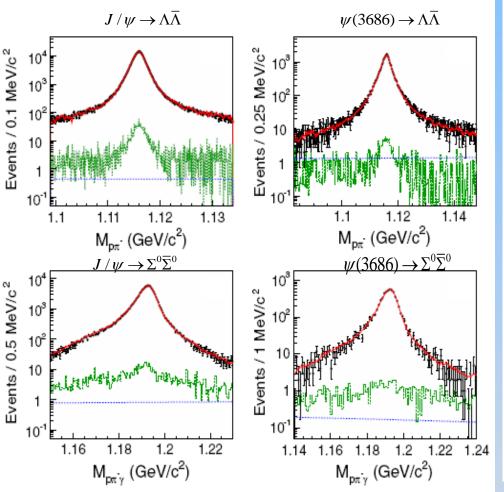
Measurement of $\eta_c \rightarrow \phi \phi, \omega \phi$

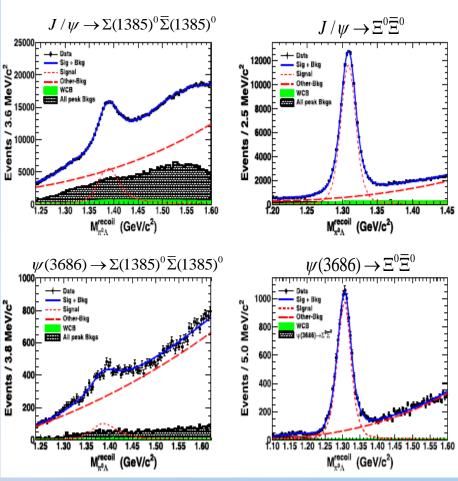
Search for $\eta_c/\eta(1405) \rightarrow \pi^+\pi^-\pi^0$

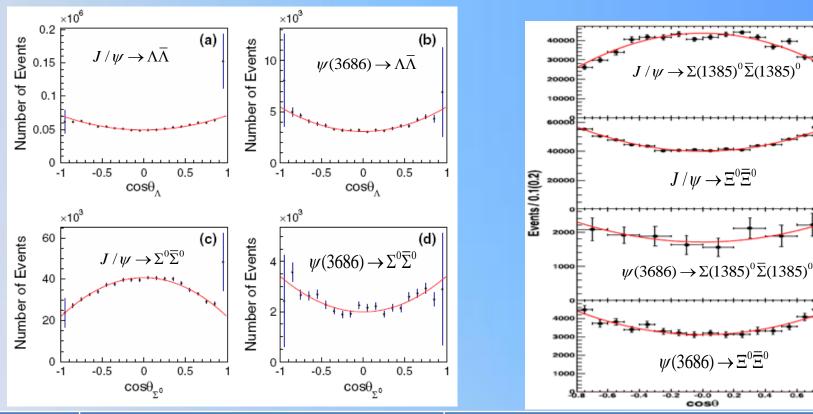
Study of $\psi(nS) \rightarrow \Lambda \overline{\Lambda}$, $\Sigma^0 \overline{\Sigma}^0$, $\Sigma (1385)^0 \overline{\Sigma} (1385)^0$, $\Xi^0 \overline{\Xi}^0$

Test of 12% rule
Test of the helicity conservation rule
Test of isospin symmetry
First measurement or with best precision

PRD 95, 052003 (2017) PLB 770, 217 (2017)







Channel	BF (×10 ⁻⁴)		α	
	J/ψ →	ψ(3686) →	J/ψ →	ψ(3686) →
$\Lambda ar{\Lambda}$	$19.43\pm0.03\pm0.33$	$3.97\pm0.02\pm0.12$	$0.469 \pm 0.026 \pm 0.008$	$0.82\pm0.08\pm0.02$
$\Sigma^0\overline{\Sigma}^0$	$11.64 \pm 0.04 \pm 0.23$	$2.44\pm0.03\pm0.11$	$-0.449\pm0.020\pm0.008$	$0.71 \pm 0.11 \pm 0.04$
$\Sigma(1385)^{0}\overline{\Sigma}(1385)$	0° 10.71 \pm 0.09 \pm 0.82	$0.69\pm0.05\pm0.05$	$-0.64\pm0.03\pm0.10$	$0.59 \pm 0.25 \pm 0.25$
$\Xi^0\overline{\Xi}^0$	$11.65\pm0.04\pm0.43$	$2.73\pm0.03\pm0.13$	$0.66\pm0.03\pm0.05$	$0.65\pm0.09\pm0.14$

More than 3σ deviation to predictions: Int.J.Mod.Phys. 2 (1987) 249, Phys. Rev.D 25 (1982) 1345

Test of 12% rule:

$$\frac{\mathcal{B}(\psi(3686)\to\Lambda\bar{\Lambda})}{\mathcal{B}(J/\psi\to\Lambda\bar{\Lambda})} = (20.43\pm0.11\pm0.58)\%$$

$$\frac{\mathcal{B}(\psi(3686) \to \Sigma^0 \bar{\Sigma}^0)}{\mathcal{B}(J/\psi \to \Sigma^0 \bar{\Sigma}^0)} = (20.96 \pm 0.27 \pm 0.92)\%$$

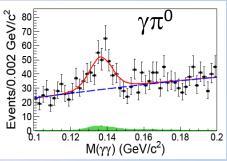
$$\frac{\mathcal{B}(\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0)}{\mathcal{B}(J/\psi \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0)} = (6.44 \pm 0.47 \pm 0.64)\%$$

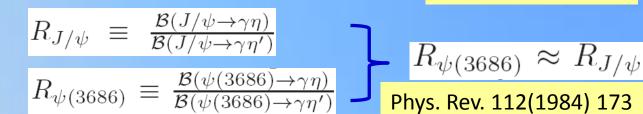
$$\frac{\mathcal{B}(\psi(3686) \to \Xi^0 \bar{\Xi}^0)}{\mathcal{B}(J/\psi \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.26 \pm 1.09)\%$$

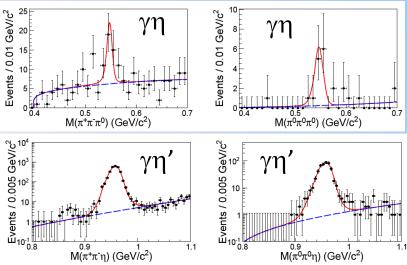
Test of isospin symmetry:

Mode	$\frac{\mathcal{B}(\psi \to \Xi^0 \bar{\Xi}^0)}{\mathcal{B}(\psi \to \Xi^- \bar{\Xi}^+)}$	$\frac{\mathcal{B}(\psi \to \Sigma (1385)^0 \bar{\Sigma} (1385)^0)}{\mathcal{B}(\psi \to \Sigma (1385)^- \bar{\Sigma} (1385)^+)}$	$\frac{\mathcal{B}(\psi \to \Sigma (1385)^{0} \bar{\Sigma} (1385)^{0})}{\mathcal{B}(\psi \to \Sigma (1385)^{+} \bar{\Sigma} (1385)^{-})}$
J/ψ	$1.12 \pm 0.01 \pm 0.07$	$0.98 \pm 0.01 \pm 0.08$	$0.85 \pm 0.02 \pm 0.09$
ψ(3686)	$0.98 \pm 0.02 \pm 0.07$	$0.81 \pm 0.12 \pm 0.12$	$0.82 \pm 0.11 \pm 0.11$

Measurement of $\psi(3686) \rightarrow \gamma \pi^0, \gamma \eta, \gamma \eta'$







$$R_{\psi(3686)} = (0.66 \pm 0.13 \pm 0.02)\%$$

 $R_{J/\psi} = (21.4 \pm 0.9)\%$

This can be explained by **PLB 697(2011) 72**, however, it predicts one order lower $\gamma\pi^0$ branching fraction. More studies are needed!

hep-ex:1708.03103

Decay mode	Significance	$\mathcal{B}(\psi(3686) \to \gamma \eta'/\eta/\pi^0)$	Previous results from BESIII
$\psi(3686) \to \gamma \eta'$	1	$(125.1 \pm 2.2 \pm 6.2) \times 10^{-6}$	/
$\psi(3686) \rightarrow \gamma \eta$	1	$(0.85 \pm 0.18 \pm 0.04) \times 10^{-6}$	/
$\psi(3686) \to \gamma \pi^0$	6.7σ	$(0.95 \pm 0.16 \pm 0.05) \times 10^{-6}$	$(1.58 \pm 0.40 \pm 0.13) \times 10^{-6}$

Measurement of higher-order multipole amplitudes in $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ PRD 95, 072004 (2017)

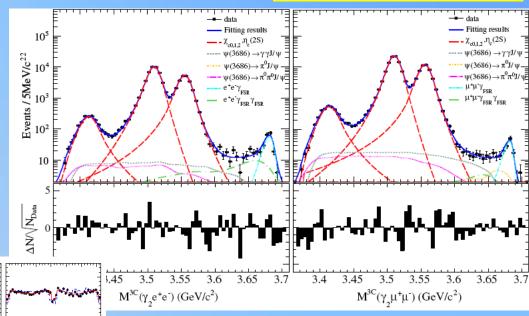
From PRL 45 (1980) 215:

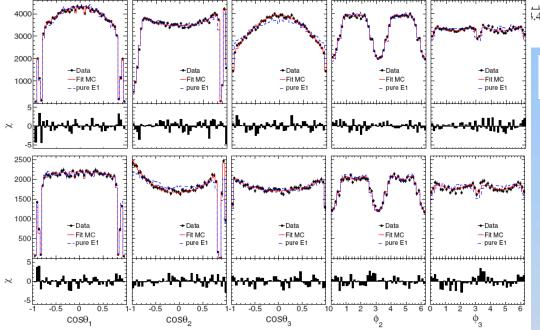
$$b_{2}^{1} = \frac{E_{\gamma_{1}}[\psi(3686) \to \gamma_{1}\chi_{c1}]}{4m_{c}} (1+\kappa) = 0.029(1+\kappa)$$

$$a_{2}^{1} = -\frac{E_{\gamma_{2}}[\chi_{c1} \to \gamma_{2}J/\psi]}{4m_{c}} (1+\kappa) = -0.065(1+\kappa)$$

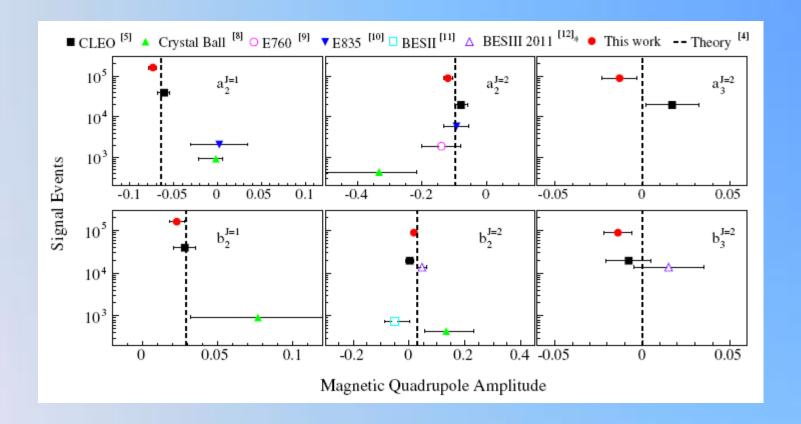
$$b_{2}^{2} = \frac{3}{\sqrt{5}} \frac{E_{\gamma_{1}}[\psi(3686) \to \gamma_{1}\chi_{c2}]}{4m_{c}} (1+\kappa) = 0.029(1+\kappa)$$

$$a_{2}^{2} = -\frac{3}{\sqrt{5}} \frac{E_{\gamma_{2}}[\chi_{c2} \to \gamma_{2}J/\psi]}{4m_{c}} (1+\kappa) = -0.096(1+\kappa)$$





$$W_{\chi_{cJ}}(\theta_{1}, \theta_{2}, \phi_{2}, \theta_{3}, \phi_{3}, a_{2,3}^{J}, b_{2,3}^{J}) = \sum_{n} a_{n} A_{|\nu|}^{J} A_{|\nu|}^{J} B_{|\nu'|}^{J} B_{|\nu'|}^{$$



$$(b_2^1/b_2^2)_{\text{th}} = 1.000 \pm 0.015$$

 $(a_2^1/a_2^2)_{\text{th}} = 0.676 \pm 0.071$

$$b_2^1/b_2^2 = 1.35 \pm 0.72$$

 $a_2^1/a_2^2 = 0.617 \pm 0.083$

Nonzero magnetic quadrupole amplitudes for the transitions $\psi(3686) \rightarrow \gamma \chi_{c1,2}$

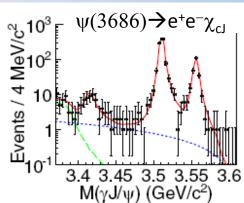
Observation of $\psi(3686) \rightarrow e^+e^-\chi_{cl}$ and $\chi_{cl} \rightarrow e^+e^-J/\psi$

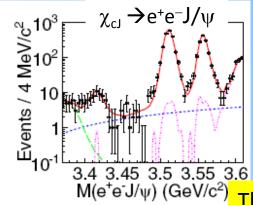
We just mentioned the higher-order multipole amplitudes in $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ are small, the E1 contribution is dominant.

the q²-dependent Transition Form Factor can:

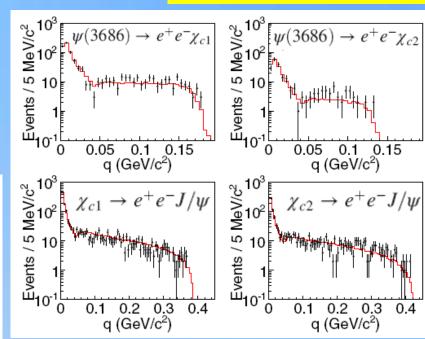
Probe χ_{cl} internal structures

Possibly distinguish the transition mechanisms based on the $c\bar{c}$ scenario and other solutions Probe exotic hadron structures





PRL 118, 221802 (2017)



The measured q distributions are consistent

		$\mathcal{D}(\psi)$ with assumption	ion of a pointlike mesor
Mode	Branching fraction	$\mathcal{B}(\psi(3080) \to \gamma \chi_{cJ})$	$\mathcal{B}(\chi_{cJ} \to \gamma J/\psi)$
$\psi(3686) \to e^+ e^- \chi_{c0}$	$(11.7 \pm 2.5 \pm 1.0) \times 10^{-4}$	$(9.4 \pm 1.9 \pm 0.6) \times 10^{-3}$	
$\psi(3686) \rightarrow e^+e^-\chi_{c1}$	$(8.6 \pm 0.3 \pm 0.6) \times 10^{-4}$	$(8.3 \pm 0.3 \pm 0.4) \times 10^{-3}$	
$\psi(3686) \rightarrow e^+e^-\chi_{c2}$	$(6.9 \pm 0.5 \pm 0.6) \times 10^{-4}$	$(6.6 \pm 0.5 \pm 0.4) \times 10^{-3}$	
$\chi_{c0} \rightarrow e^+ e^- J/\psi$ ($(1.51 \pm 0.30 \pm 0.13) \times 10^{-4}$		$(9.5 \pm 1.9 \pm 0.7) \times 10^{-3}$
$\chi_{c1} \rightarrow e^+ e^- J/\psi$ ($(3.73 \pm 0.09 \pm 0.25) \times 10^{-3}$		$(10.1 \pm 0.3 \pm 0.5) \times 10^{-3}$
$\chi_{c2} \rightarrow e^+ e^- J/\psi$ ($(2.48 \pm 0.08 \pm 0.16) \times 10^{-3}$		$(11.3 \pm 0.4 \pm 0.5) \times 10^{-3}$

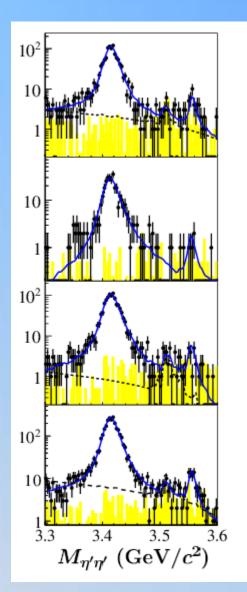
Observation of $\chi_{c0,2} \rightarrow \eta \eta'$, $\eta' \eta'$

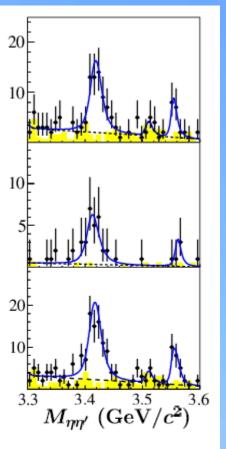
Doubly OZI violating amplitude play a crucial role in isospin-0 light meson pairs? Such as $\chi_{cJ} \rightarrow SS$, PP and VV should be studied for insights into the mechanisms for the pair production. η - η ' mixing mechanism in χ_{cJ} decays

Channel	This work (10 ⁻⁵)	PDG (10 ⁻⁵)
$\chi_{c0} \rightarrow \eta' \eta'$	$219 \pm 3 \pm 14$	196±21
$\chi_{c2} \rightarrow \eta' \eta'$	$4.76\pm0.56\pm0.38$	<10
$\chi_{c0} \rightarrow \eta \eta'$	$8.92 \pm 0.84 \pm 0.65$	<23
$\chi_{c2} \rightarrow \eta \eta'$	$2.27 \pm 0.43 \pm 0.25$	<6.0

The results give relative small DOZI contribution in $\chi_{c0,2} \rightarrow PP$

hep-ex:1707.07042

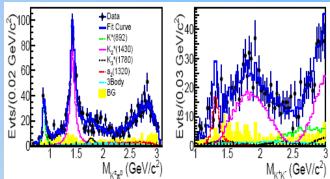


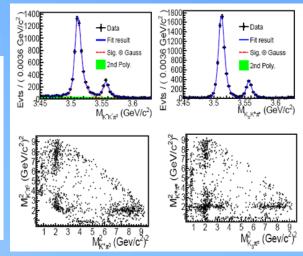


Observation of HSR suppressed processes $\chi_{c2} \rightarrow K(892)*K$ and study of $\chi_{c2} \rightarrow \rho^{\pm}\pi$

pQCD dominance is accepted How important of non-perturbative mechanisms in charmonium region?

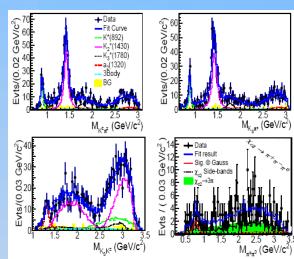
 $\chi_{c2} \rightarrow VP \ can :$ testing the HSR;
pinning down the mechanisms
violating the leading pQCD
approximation





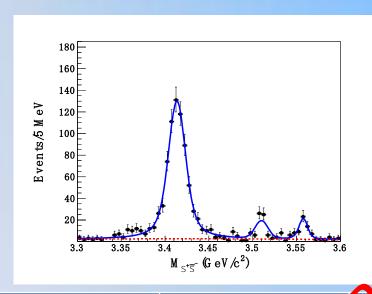
hep-ex: 1612.07398

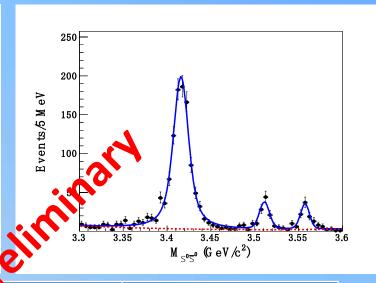
Mode	$K^{+}K^{-}\pi^{0}$	_	
	$1.8 \pm 0.2 \pm 0.2$	$1.4 \pm 0.2 \pm 0.2$	$1.5 \pm 0.1 \pm 0.2$
$K^{*0}\overline{K}^{0}$	_	$1.3 \pm 0.2 \pm 0.2$	_
	$18.2 \pm 0.8 \pm 1.6$	$13.6 \pm 0.8 \pm 1.4$	$15.5 \pm 0.6 \pm 1.2$
$K_2^{*0}\overline{K}^0$	_	$13.0 \pm 1.0 \pm 1.5$	_
	$5.3 \pm 0.5 \pm 0.9$	$5.9 \pm 1.1 \pm 1.5$	$5.4 \pm 0.5 \pm 0.7$
$K_{3}^{*0}\overline{K}{}^{0}$	_	$5.9 \pm 1.6 \pm 1.5$	_
$a_{2}^{0}\pi^{0}$	$13.5 \pm 1.6 \pm 3.2$	_	_
$a_2^{\pm}\pi^{\mp}$	_	$18.4 \pm 3.3 \pm 5.5$	_



Measurement of $\chi_{cJ} \rightarrow \Sigma^{+}\overline{\Sigma}^{-}$, $\Sigma^{0}\overline{\Sigma}^{0}$

Test the color octet model; Provide information for helicity selection rule Test the iso-spin symmetry





Decay Channel	This work (10 ⁻⁵)	FDG (10 ⁻⁵)	Ratio(charge/neutral)
$\chi_{c0} \rightarrow \Sigma^{+}\Sigma^{-}$	51.8±2.6±3.0	39±7	1 00 1 0 07 1 0 00
$\chi_{c0} \rightarrow \Sigma^0 \Sigma^0$	47.7±1.9±36	44±4	$1.09\pm0.07\pm0.09$
$\chi_{c1} \rightarrow \Sigma^{+}\Sigma^{-}$	$3.8\pm0.6\pm0.3$	<6	$0.80 \pm 0.18 \pm 0.08$
$\chi_{c1} \rightarrow \Sigma^0 \Sigma^0$	$3.7 \pm 1.0 \pm 0.5$	<4	0.80 ± 0.18 ± 0.08
$\chi_{c2} \rightarrow \Sigma^{+}\Sigma^{-}$	$3.6\pm0.7\pm0.3$	<7	$0.92 \pm 0.21 \pm 0.11$
$\chi_{c2} \rightarrow \Sigma^0 \Sigma^0$	$3.8\pm1.0\pm0.5$	<6	0.92 \(\text{0.21} \(\text{0.11} \)

Improved measurement of $\eta_c \rightarrow \phi \phi, \omega \phi$

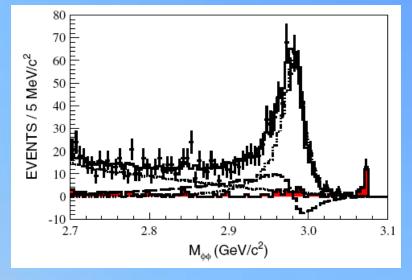
 $\eta_c \rightarrow VV$ are helicity selection rule suppressed decays

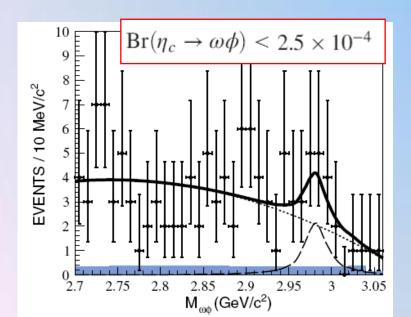
PRD 95, 092004 (2017)

Many calculations:

HSR evasion scenario, next-to-leading order and relativistic corrections in QCD, light quark mass corrections, ³P₀ quark pair creation mechanism, long-distance intermediate meson loop effect

Previous measurement is much larger than those of theoretical predictions but with relative large uncertainty.





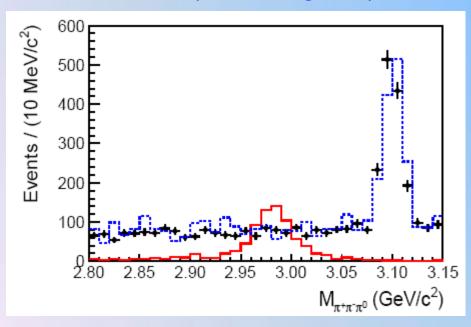
Experiment	${\rm Br}(\eta_c\to\phi\phi)(\times 10^{-3})$
BESIII	$2.5 \pm 0.3^{+0.3}_{-0.7} \pm 0.6$
BESII	1.9 ± 0.6
DM2	2.3 ± 0.8
Theoretical	
pQCD	(0.7-0.8)
$^{3}P_{0}$ quark model	(1.9-2.0)
Charm meson loop	2.0
:	15

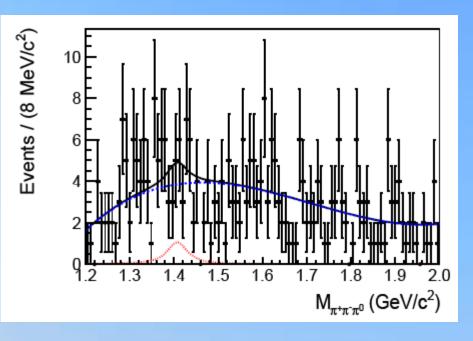
Search for $\eta_c/\eta(1405) \rightarrow \pi^+\pi^-\pi^0$

The lowest charmonium, annihilation into two gluons, much information on gluon dynamics can be obtained by studying η_c decays

hep-ex: 1707.0517

Search for the isospin violating decay





Br(
$$\eta_c \rightarrow \pi^+ \pi^- \pi^0$$
)<1.6×10⁻⁶
Br($\eta(1405) \rightarrow \pi^+ \pi^- \pi^0$)< 5.2×10⁻⁷

Summary

A lot of charmonium decays, J/ ψ , ψ (3686), η_c , η_c (2S) are reported by BESIII, only some of them are listed in this talk, and still many of them:

Measurement of BF(ψ (3686) $\rightarrow \gamma \chi_{cJ}$) PRD96 (2017) 032001 Observation of $h_c \rightarrow \gamma \eta'$ and $\gamma \eta$ PRL116 (2016) 251802 Study of $\psi \rightarrow \Xi^- \overline{\Xi}^+, \Sigma^{+/-} \overline{\Sigma}^{-/+}$ PRD93 (2016) 072003

••••

World largest e+e- collision charmonium data sets at BESIII provide ideal laboratory to study charmonium decays: high statistics, low background Many results have been published, many analysis are still ongoing, more results are promising. Expecting more theoretical attentions on these topics and more communications

Thanks for your attention!

Amplitude analysis of $J/\psi \rightarrow \gamma \phi \phi$, $\gamma \omega \phi$

$$\begin{split} A_{\eta_c}(\lambda_0,\lambda_\gamma,\lambda_1,\lambda_2) &= F_{\lambda_\gamma}^{\psi}(r_1)D_{\lambda_0,-\lambda_\gamma}^{1*}(\theta_0,\phi_0)BW_j(m_{\phi\phi}) \\ &\times F_{\lambda_1,\lambda_2}^{\eta_c}(r_2)D_{0,\lambda_1-\lambda_2}^{0*}(\theta_1,\phi_1)\frac{\mathcal{F}(E_\gamma)}{\mathcal{F}(E_\gamma^0)} \end{split}$$

$$\begin{split} F_1^{\psi} &= -F_{-1}^{\psi} = \frac{g_{11}}{\sqrt{2}} r_1 \frac{B_1(r_1)}{B_1(r_1^0)}, \\ F_{1,1}^{\eta_c} &= -F_{-1,-1}^{\eta_c} = \frac{g'_{11}}{\sqrt{2}} r_2 \frac{B_1(r_2)}{B_1(r_2^0)}, \\ F_{0,0}^{\eta_c} &= 0, \end{split}$$

$$\begin{split} A_{\text{NR}}^{0^-}(\lambda_0,\lambda_{\gamma},\lambda_1,\lambda_2) &= F_{\lambda_{\gamma},0}^{\psi} D_{\lambda_0,-\lambda_{\gamma}}^{1*}(\theta_0,\phi_0) F_{\lambda_1,\lambda_2}^{0^-} \\ &\qquad \qquad \times D_{0,\lambda_1-\lambda_2}^{0*}(\theta_1,\phi_1) \quad \text{for } 0^-, \\ A_{\text{NR}}^{0+}(\lambda_0,\lambda_{\gamma},\lambda_1,\lambda_2) &= F_{\lambda_{\gamma},0}^{\psi} D_{\lambda_0,-\lambda_{\gamma}}^{1*}(\theta_0,\phi_0) F_{\lambda_1,\lambda_2}^{0^+} \\ &\qquad \qquad \times D_{0,\lambda_1-\lambda_2}^{0*}(\theta_1,\phi_1) \quad \text{for } 0^+, \\ A_{\text{NR}}^{2+}(\lambda_0,-\lambda_{\gamma},\lambda_1,\lambda_2) &= \sum_{\lambda_J} F_{\lambda_{\gamma},\lambda_J}^{\psi} D_{\lambda_0,\lambda_J-\lambda_{\gamma}}^{1*}(\theta_0,\phi_0) \\ &\qquad \qquad \times F_{\lambda_1,\lambda_2}^{2+} D_{\lambda_1,\lambda_1-\lambda_2}^{2*}(\theta_1,\phi_1) \quad \text{for } 2^+. \end{split}$$

The total amplitude is expressed by

$$A(\lambda_0, \lambda_{\gamma}, \lambda_1, \lambda_2) = A_{\eta_c}(\lambda_0, \lambda_{\gamma}, \lambda_1, \lambda_2) + \sum_{J^P} A_{NR}^{J^P}(\lambda_0, \lambda_{\gamma}, \lambda_1, \lambda_2)$$

For the 0+ case, helicity amplitudes are taken as

$$F_{1}^{\Psi} = F_{-1}^{\Psi} = \frac{g_{21}r_{1}^{2}}{\sqrt{6}} \frac{B_{2}(r_{1})}{B_{2}(r_{1}^{0})} + \frac{g_{01}}{\sqrt{3}},$$

$$F_{11}^{0^{+}} = F_{11}^{0^{+}} = \frac{g'_{22}r_{2}^{2}}{\sqrt{6}} \frac{B_{2}(r_{2})}{B_{2}(r_{2}^{0})} + \frac{g'_{00}}{\sqrt{3}},$$

$$F_{00}^{0^{+}} = \sqrt{\frac{2}{3}} r_{2}^{2} g'_{22} \frac{B_{2}(r_{2})}{B_{2}(r_{2}^{0})} - \frac{g'_{00}}{\sqrt{3}}.$$

For the 2+ case, helicity amplitudes are taken as

$$\begin{split} F_{12}^{\varPsi} &= F_{-1-2}^{\varPsi} = \frac{g_{43}r_{1}^{4}B_{4}(r_{1})}{\sqrt{70}} + \frac{g_{21}r_{1}^{2}B_{2}(r_{1})}{\sqrt{10}} \\ &- \frac{g_{22}r_{1}^{2}B_{2}(r_{1})}{\sqrt{6}} + \sqrt{\frac{2}{105}}g_{23}r_{1}^{2}\frac{B_{2}(r_{1})}{B_{2}(r_{1}^{0})} + \frac{g_{01}}{\sqrt{5}}, \\ F_{11}^{\varPsi} &= F_{-1-1}^{\varPsi} = \frac{-2g_{43}r_{1}^{4}B_{4}(r_{1})}{\sqrt{35}} - \frac{g_{21}r_{1}^{2}B_{2}(r_{1})}{B_{2}(r_{1}^{0})} + \frac{g_{01}}{\sqrt{5}}, \\ F_{10}^{\varPsi} &= F_{-10}^{\varPsi} = \sqrt{\frac{3}{35}}g_{23}r_{1}^{2}\frac{B_{2}(r_{1})}{B_{2}(r_{1}^{0})} + \frac{g_{01}}{\sqrt{10}}, \\ F_{10}^{\varPsi} &= F_{-10}^{\varPsi} = \sqrt{\frac{3}{35}}g_{43}r_{1}^{4}\frac{B_{4}(r_{1})}{B_{4}(r_{1}^{0})} + \frac{g_{21}r_{1}^{2}B_{2}(r_{1})}{2\sqrt{15}}\frac{B_{2}(r_{1}^{0})}{B_{2}(r_{1}^{0})} + \frac{1}{2}g_{22}r_{1}^{2}\frac{B_{2}(r_{1})}{B_{2}(r_{1}^{0})} + \frac{2g_{23}r_{1}^{2}B_{2}(r_{1})}{\sqrt{35}}\frac{B_{2}(r_{1}^{0})}{B_{2}(r_{1}^{0})} + \frac{g_{01}}{\sqrt{30}}, \\ F_{11}^{2+} &= F_{-1-1}^{2+} = \sqrt{\frac{3}{35}}g_{42}\frac{B_{4}(r)}{B_{4}(r')}r^{4} + \frac{g_{20}r_{2}^{2}B_{2}(r_{2})}{\sqrt{3}}\frac{B_{2}(r_{2}^{0})}{B_{2}(r_{2}^{0})} - \frac{g_{22}r_{2}^{2}B_{2}(r_{2})}{\sqrt{21}}\frac{B_{2}(r_{2}^{0})}{B_{2}(r_{2}^{0})} + \frac{g_{02}}{\sqrt{30}}, \\ F_{10}^{2+} &= F_{-10}^{2+} = -\frac{2}{\sqrt{35}}g_{42}r^{4}\frac{B_{4}(r)}{B_{4}(r')} - \frac{1}{2}g_{21}^{2}r_{2}^{2}\frac{B_{2}(r_{2})}{B_{2}(r_{2}^{0})} - \frac{g_{22}r_{2}^{2}B_{2}(r_{2})}{2\sqrt{7}}\frac{B_{2}(r_{2})}{B_{2}(r_{2}^{0})} + \frac{g_{02}}{\sqrt{10}}, \\ F_{1-1}^{2+} &= F_{-11}^{2+} = \frac{g_{42}r^{4}}{\sqrt{70}}\frac{B_{4}(r)}{B_{4}(r')} + \sqrt{\frac{7}{2}}g_{22}^{2}r_{2}^{2}\frac{B_{2}(r_{2})}{B_{2}(r_{2}^{0})} + \frac{g_{02}}{\sqrt{5}}. \\ F_{1-1}^{2+} &= F_{-11}^{2+} = \frac{g_{42}r^{4}}{\sqrt{70}}\frac{B_{4}(r)}{B_{4}(r')} + \sqrt{\frac{7}{2}}g_{22}^{2}r_{2}^{2}\frac{B_{2}(r_{2})}{B_{2}(r_{2}^{0})} + \frac{g_{02}}{\sqrt{5}}. \\ F_{1-1}^{2+} &= F_{-11}^{2+} = \frac{g_{42}r^{4}}{\sqrt{70}}\frac{B_{4}(r')}{B_{4}(r')} + \sqrt{\frac{7}{2}}g_{22}^{2}r_{2}^{2}\frac{B_{2}(r_{2})}{B_{2}(r_{2}^{0})} + \frac{g_{02}}{\sqrt{5}}. \\ F_{1-1}^{2+} &= F_{-11}^{2+} = \frac{g_{42}r^{4}}{\sqrt{70}}\frac{B_{4}(r')}{B_{4}(r')} + \sqrt{\frac{7}{2}}g_{22}^{2}r_{2}^{2}\frac{B_{2}(r_{2})}{B_{2}(r_{2}^{0})} + \frac{g_{02}}{\sqrt{5}}. \\ F_{1-1}^{2+} &= F_{-11}^{2+} = \frac{g_{42}r^{4}}{\sqrt{70}}\frac{B_{4}(r')}{B_{4}(r')} + \frac{g_{12}r^{2}}{\sqrt{70}}\frac{B_{$$